Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein.

Identifieur interne : 001822 ( PubMed/Curation ); précédent : 001821; suivant : 001823

Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein.

Auteurs : Jean Kaoru Millet [États-Unis] ; Gary R. Whittaker [États-Unis]

Source :

RBID : pubmed:25288733

Descripteurs français

English descriptors

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly identified betacoronavirus causing high morbidity and mortality in humans. The coronavirus spike (S) protein is the main determinant of viral entry, and although it was previously shown that MERS-CoV S can be activated by various proteases, the details of the mechanisms of proteolytic activation of fusion are still incompletely characterized. Here, we have uncovered distinctive characteristics of MERS-CoV S. We identify, by bioinformatics and peptide cleavage assays, two cleavage sites for furin, a ubiquitously expressed protease, which are located at the S1/S2 interface and at the S2' position of the S protein. We show that although the S1/S2 site is proteolytically processed by furin during protein biosynthesis, the S2' site is cleaved upon viral entry. MERS-CoV pseudovirion infection was shown to be enhanced by elevated levels of furin expression, and entry could be decreased by furin siRNA silencing. Enhanced furin activity appeared to partially override the low pH-dependent nature of MERS-CoV entry. Inhibition of furin activity was shown to decrease MERS-CoV S-mediated entry, as well as infection by the virus. Overall, we show that MERS-CoV has evolved an unusual two-step furin activation for fusion, suggestive of a role during the process of emergence into the human population. The ability of MERS-CoV to use furin in this manner, along with other proteases, may explain the polytropic nature of the virus.

DOI: 10.1073/pnas.1407087111
PubMed: 25288733

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25288733

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein.</title>
<author>
<name sortKey="Millet, Jean Kaoru" sort="Millet, Jean Kaoru" uniqKey="Millet J" first="Jean Kaoru" last="Millet">Jean Kaoru Millet</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Whittaker, Gary R" sort="Whittaker, Gary R" uniqKey="Whittaker G" first="Gary R" last="Whittaker">Gary R. Whittaker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 grw7@cornell.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Cornell University, Ithaca</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25288733</idno>
<idno type="pmid">25288733</idno>
<idno type="doi">10.1073/pnas.1407087111</idno>
<idno type="wicri:Area/PubMed/Corpus">001822</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001822</idno>
<idno type="wicri:Area/PubMed/Curation">001822</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001822</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein.</title>
<author>
<name sortKey="Millet, Jean Kaoru" sort="Millet, Jean Kaoru" uniqKey="Millet J" first="Jean Kaoru" last="Millet">Jean Kaoru Millet</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology, Cornell University, Ithaca</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Whittaker, Gary R" sort="Whittaker, Gary R" uniqKey="Whittaker G" first="Gary R" last="Whittaker">Gary R. Whittaker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 grw7@cornell.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Cornell University, Ithaca</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Line, Tumor</term>
<term>Chlorocebus aethiops</term>
<term>Computational Biology</term>
<term>Furin (chemistry)</term>
<term>Gene Silencing</term>
<term>Genetic Predisposition to Disease</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Middle East Respiratory Syndrome Coronavirus (physiology)</term>
<term>Mutation</term>
<term>Peptide Hydrolases (metabolism)</term>
<term>RNA, Small Interfering (metabolism)</term>
<term>Receptors, Virus (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Time Factors</term>
<term>Vero Cells</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Biologie informatique</term>
<term>Cellules HEK293</term>
<term>Cellules Vero</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (physiologie)</term>
<term>Extinction de l'expression des gènes</term>
<term>Facteurs temps</term>
<term>Furine ()</term>
<term>Glycoprotéine de spicule des coronavirus (métabolisme)</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Mutation</term>
<term>Peptide hydrolases (métabolisme)</term>
<term>Petit ARN interférent (métabolisme)</term>
<term>Prédisposition génétique à une maladie</term>
<term>Pénétration virale</term>
<term>Récepteurs viraux (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Furin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptide Hydrolases</term>
<term>RNA, Small Interfering</term>
<term>Receptors, Virus</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Peptide hydrolases</term>
<term>Petit ARN interférent</term>
<term>Récepteurs viraux</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line, Tumor</term>
<term>Chlorocebus aethiops</term>
<term>Computational Biology</term>
<term>Gene Silencing</term>
<term>Genetic Predisposition to Disease</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Mutation</term>
<term>Time Factors</term>
<term>Vero Cells</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Biologie informatique</term>
<term>Cellules HEK293</term>
<term>Cellules Vero</term>
<term>Extinction de l'expression des gènes</term>
<term>Facteurs temps</term>
<term>Furine</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Mutation</term>
<term>Prédisposition génétique à une maladie</term>
<term>Pénétration virale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly identified betacoronavirus causing high morbidity and mortality in humans. The coronavirus spike (S) protein is the main determinant of viral entry, and although it was previously shown that MERS-CoV S can be activated by various proteases, the details of the mechanisms of proteolytic activation of fusion are still incompletely characterized. Here, we have uncovered distinctive characteristics of MERS-CoV S. We identify, by bioinformatics and peptide cleavage assays, two cleavage sites for furin, a ubiquitously expressed protease, which are located at the S1/S2 interface and at the S2' position of the S protein. We show that although the S1/S2 site is proteolytically processed by furin during protein biosynthesis, the S2' site is cleaved upon viral entry. MERS-CoV pseudovirion infection was shown to be enhanced by elevated levels of furin expression, and entry could be decreased by furin siRNA silencing. Enhanced furin activity appeared to partially override the low pH-dependent nature of MERS-CoV entry. Inhibition of furin activity was shown to decrease MERS-CoV S-mediated entry, as well as infection by the virus. Overall, we show that MERS-CoV has evolved an unusual two-step furin activation for fusion, suggestive of a role during the process of emergence into the human population. The ability of MERS-CoV to use furin in this manner, along with other proteases, may explain the polytropic nature of the virus. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25288733</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>111</Volume>
<Issue>42</Issue>
<PubDate>
<Year>2014</Year>
<Month>Oct</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein.</ArticleTitle>
<Pagination>
<MedlinePgn>15214-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1407087111</ELocationID>
<Abstract>
<AbstractText>Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly identified betacoronavirus causing high morbidity and mortality in humans. The coronavirus spike (S) protein is the main determinant of viral entry, and although it was previously shown that MERS-CoV S can be activated by various proteases, the details of the mechanisms of proteolytic activation of fusion are still incompletely characterized. Here, we have uncovered distinctive characteristics of MERS-CoV S. We identify, by bioinformatics and peptide cleavage assays, two cleavage sites for furin, a ubiquitously expressed protease, which are located at the S1/S2 interface and at the S2' position of the S protein. We show that although the S1/S2 site is proteolytically processed by furin during protein biosynthesis, the S2' site is cleaved upon viral entry. MERS-CoV pseudovirion infection was shown to be enhanced by elevated levels of furin expression, and entry could be decreased by furin siRNA silencing. Enhanced furin activity appeared to partially override the low pH-dependent nature of MERS-CoV entry. Inhibition of furin activity was shown to decrease MERS-CoV S-mediated entry, as well as infection by the virus. Overall, we show that MERS-CoV has evolved an unusual two-step furin activation for fusion, suggestive of a role during the process of emergence into the human population. The ability of MERS-CoV to use furin in this manner, along with other proteases, may explain the polytropic nature of the virus. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Millet</LastName>
<ForeName>Jean Kaoru</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Whittaker</LastName>
<ForeName>Gary R</ForeName>
<Initials>GR</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 grw7@cornell.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 AI111085</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.75</RegistryNumber>
<NameOfSubstance UI="D045683">Furin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045683" MajorTopicYN="N">Furin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020022" MajorTopicYN="N">Genetic Predisposition to Disease</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Middle East respiratory syndrome coronavirus</Keyword>
<Keyword MajorTopicYN="N">furin</Keyword>
<Keyword MajorTopicYN="N">proteolytic activation</Keyword>
<Keyword MajorTopicYN="N">spike protein</Keyword>
<Keyword MajorTopicYN="N">virus entry</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25288733</ArticleId>
<ArticleId IdType="pii">1407087111</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1407087111</ArticleId>
<ArticleId IdType="pmc">PMC4210292</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1522-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16432208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):1011-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Feb;88(3):1673-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24257604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2008 May-Jun;43(3):189-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18568847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Dec;87(23):12552-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Oct;84(19):10016-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20631123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2013 Jun 1;207(11):1743-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00473-12. doi: 10.1128/mBio.00473-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014;5(2):e00884-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24570370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 24;276(34):31642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(4):e1003309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23593008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):176-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 Mar 15;211(6):889-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25057042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Histochem Cytochem. 1997 Jan;45(1):3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9010463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2012 Nov 25;433(2):421-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22995191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9859-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11493675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 May;88(9):4943-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24554652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2012 May;11(5):367-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22679642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jun 28;288(26):19154-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23653353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Sep;83(17):8744-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Jun;87(Pt 6):1659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2012;2:261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(10):e76469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24098509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(24):13363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jun 22;287(26):21992-2003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22539349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 May;88(9):4953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24554656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 May;87(10):5502-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00515-12. doi: 10.1128/mBio.00515-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23232719</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001822 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001822 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25288733
   |texte=   Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25288733" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021