Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Minimum amino acid residues of an α-helical peptide leading to lipid nanodisc formation.

Identifieur interne : 001807 ( PubMed/Curation ); précédent : 001806; suivant : 001808

Minimum amino acid residues of an α-helical peptide leading to lipid nanodisc formation.

Auteurs : Tomohiro Imura ; Yohei Tsukui ; Kenichi Sakai ; Hideki Sakai ; Toshiaki Taira ; Dai Kitamoto

Source :

RBID : pubmed:25341499

Descripteurs français

English descriptors

Abstract

Nanodiscs are a relatively new class of nanoparticles composed of amphiphilic α-helical scaffold peptides and a phospholipid bilayer, and find potential applications in various fields. In order to identify the minimum number of amino acid residues of an amphiphilic α-helical peptide that leads to nanodisc formation, seven peptides differing in lengths (22-, 18-, 14-, 12-, 10-, 8-, and 6-mers) that mimic and modify the C-terminal domain of apoA-I (residues 220-241) were synthesized. At a concentration of 0.3 mM, the 6- and 8-mer peptides did not present any surface activity. In case of the 10-mer peptide, the aqueous surface tension initially decreased and reached a constant value of 51.9 mN/m with the 14-, 18-, and 22-mer peptides. Moreover, upon mixing the surface-active peptides (14-, 18-, and 22-mers) with dipalmitoylphosphatidylcholine (DMPC) liposomes (2.5:1, peptide : DMPC), the turbid DMPC liposome solution rapidly became transparent. Further analysis of this solution by negative-stain transmission electron microscopy (NS-TEM) indicated the presence of disk-like nanostructures. The average diameter of the nanodiscs formed was 9.5 ± 2.7 nm for the 22-mer, 8.1 ± 2.7 nm for the 18-mer, and 25.5 ± 8.5 nm for the 14-mer peptides. These results clearly demonstrate that the surface properties of peptides play a critical role in nanodisc formation. Furthermore, the minimum length of an amphiphilic peptide from the C-terminal of apoA-I protein that can lead to nanodisc formation is 14 amino acid residues.

DOI: 10.5650/jos.ess14172
PubMed: 25341499

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25341499

Curation

No country items

Tomohiro Imura
<affiliation>
<nlm:affiliation>Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST).</nlm:affiliation>
<wicri:noCountry code="subField">National Institute of Advanced Industrial Science and Technology (AIST)</wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Minimum amino acid residues of an α-helical peptide leading to lipid nanodisc formation.</title>
<author>
<name sortKey="Imura, Tomohiro" sort="Imura, Tomohiro" uniqKey="Imura T" first="Tomohiro" last="Imura">Tomohiro Imura</name>
<affiliation>
<nlm:affiliation>Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST).</nlm:affiliation>
<wicri:noCountry code="subField">National Institute of Advanced Industrial Science and Technology (AIST)</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tsukui, Yohei" sort="Tsukui, Yohei" uniqKey="Tsukui Y" first="Yohei" last="Tsukui">Yohei Tsukui</name>
</author>
<author>
<name sortKey="Sakai, Kenichi" sort="Sakai, Kenichi" uniqKey="Sakai K" first="Kenichi" last="Sakai">Kenichi Sakai</name>
</author>
<author>
<name sortKey="Sakai, Hideki" sort="Sakai, Hideki" uniqKey="Sakai H" first="Hideki" last="Sakai">Hideki Sakai</name>
</author>
<author>
<name sortKey="Taira, Toshiaki" sort="Taira, Toshiaki" uniqKey="Taira T" first="Toshiaki" last="Taira">Toshiaki Taira</name>
</author>
<author>
<name sortKey="Kitamoto, Dai" sort="Kitamoto, Dai" uniqKey="Kitamoto D" first="Dai" last="Kitamoto">Dai Kitamoto</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25341499</idno>
<idno type="pmid">25341499</idno>
<idno type="doi">10.5650/jos.ess14172</idno>
<idno type="wicri:Area/PubMed/Corpus">001807</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001807</idno>
<idno type="wicri:Area/PubMed/Curation">001807</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001807</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Minimum amino acid residues of an α-helical peptide leading to lipid nanodisc formation.</title>
<author>
<name sortKey="Imura, Tomohiro" sort="Imura, Tomohiro" uniqKey="Imura T" first="Tomohiro" last="Imura">Tomohiro Imura</name>
<affiliation>
<nlm:affiliation>Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST).</nlm:affiliation>
<wicri:noCountry code="subField">National Institute of Advanced Industrial Science and Technology (AIST)</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tsukui, Yohei" sort="Tsukui, Yohei" uniqKey="Tsukui Y" first="Yohei" last="Tsukui">Yohei Tsukui</name>
</author>
<author>
<name sortKey="Sakai, Kenichi" sort="Sakai, Kenichi" uniqKey="Sakai K" first="Kenichi" last="Sakai">Kenichi Sakai</name>
</author>
<author>
<name sortKey="Sakai, Hideki" sort="Sakai, Hideki" uniqKey="Sakai H" first="Hideki" last="Sakai">Hideki Sakai</name>
</author>
<author>
<name sortKey="Taira, Toshiaki" sort="Taira, Toshiaki" uniqKey="Taira T" first="Toshiaki" last="Taira">Toshiaki Taira</name>
</author>
<author>
<name sortKey="Kitamoto, Dai" sort="Kitamoto, Dai" uniqKey="Kitamoto D" first="Dai" last="Kitamoto">Dai Kitamoto</name>
</author>
</analytic>
<series>
<title level="j">Journal of oleo science</title>
<idno type="eISSN">1347-3352</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>1,2-Dipalmitoylphosphatidylcholine</term>
<term>Amino Acid Sequence</term>
<term>Amino Acids (chemistry)</term>
<term>Apolipoprotein A-I (chemical synthesis)</term>
<term>Apolipoprotein A-I (chemistry)</term>
<term>Apolipoprotein A-I (ultrastructure)</term>
<term>Lipid Bilayers</term>
<term>Lipids (chemistry)</term>
<term>Liposomes (chemistry)</term>
<term>Liposomes (ultrastructure)</term>
<term>Microscopy, Electron, Transmission</term>
<term>Nanoparticles (chemistry)</term>
<term>Nanoparticles (ultrastructure)</term>
<term>Peptides (chemistry)</term>
<term>Protein Structure, Secondary</term>
<term>Protein Structure, Tertiary</term>
<term>Surface Tension</term>
<term>Water</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>1,2-Dipalmitoylphosphatidylcholine</term>
<term>Acides aminés ()</term>
<term>Apolipoprotéine A-I ()</term>
<term>Apolipoprotéine A-I (synthèse chimique)</term>
<term>Apolipoprotéine A-I (ultrastructure)</term>
<term>Double couche lipidique</term>
<term>Eau</term>
<term>Lipides ()</term>
<term>Liposomes ()</term>
<term>Liposomes (ultrastructure)</term>
<term>Microscopie électronique à transmission</term>
<term>Nanoparticules ()</term>
<term>Nanoparticules (ultrastructure)</term>
<term>Peptides ()</term>
<term>Structure secondaire des protéines</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Tension superficielle</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Apolipoprotein A-I</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Amino Acids</term>
<term>Apolipoprotein A-I</term>
<term>Lipids</term>
<term>Liposomes</term>
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Apolipoprotein A-I</term>
<term>Liposomes</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>1,2-Dipalmitoylphosphatidylcholine</term>
<term>Lipid Bilayers</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="synthèse chimique" xml:lang="fr">
<term>Apolipoprotéine A-I</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Microscopy, Electron, Transmission</term>
<term>Protein Structure, Secondary</term>
<term>Protein Structure, Tertiary</term>
<term>Surface Tension</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>1,2-Dipalmitoylphosphatidylcholine</term>
<term>Acides aminés</term>
<term>Apolipoprotéine A-I</term>
<term>Double couche lipidique</term>
<term>Eau</term>
<term>Lipides</term>
<term>Liposomes</term>
<term>Microscopie électronique à transmission</term>
<term>Nanoparticules</term>
<term>Peptides</term>
<term>Structure secondaire des protéines</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Tension superficielle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nanodiscs are a relatively new class of nanoparticles composed of amphiphilic α-helical scaffold peptides and a phospholipid bilayer, and find potential applications in various fields. In order to identify the minimum number of amino acid residues of an amphiphilic α-helical peptide that leads to nanodisc formation, seven peptides differing in lengths (22-, 18-, 14-, 12-, 10-, 8-, and 6-mers) that mimic and modify the C-terminal domain of apoA-I (residues 220-241) were synthesized. At a concentration of 0.3 mM, the 6- and 8-mer peptides did not present any surface activity. In case of the 10-mer peptide, the aqueous surface tension initially decreased and reached a constant value of 51.9 mN/m with the 14-, 18-, and 22-mer peptides. Moreover, upon mixing the surface-active peptides (14-, 18-, and 22-mers) with dipalmitoylphosphatidylcholine (DMPC) liposomes (2.5:1, peptide : DMPC), the turbid DMPC liposome solution rapidly became transparent. Further analysis of this solution by negative-stain transmission electron microscopy (NS-TEM) indicated the presence of disk-like nanostructures. The average diameter of the nanodiscs formed was 9.5 ± 2.7 nm for the 22-mer, 8.1 ± 2.7 nm for the 18-mer, and 25.5 ± 8.5 nm for the 14-mer peptides. These results clearly demonstrate that the surface properties of peptides play a critical role in nanodisc formation. Furthermore, the minimum length of an amphiphilic peptide from the C-terminal of apoA-I protein that can lead to nanodisc formation is 14 amino acid residues. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25341499</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1347-3352</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>63</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Journal of oleo science</Title>
<ISOAbbreviation>J Oleo Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Minimum amino acid residues of an α-helical peptide leading to lipid nanodisc formation.</ArticleTitle>
<Pagination>
<MedlinePgn>1203-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Nanodiscs are a relatively new class of nanoparticles composed of amphiphilic α-helical scaffold peptides and a phospholipid bilayer, and find potential applications in various fields. In order to identify the minimum number of amino acid residues of an amphiphilic α-helical peptide that leads to nanodisc formation, seven peptides differing in lengths (22-, 18-, 14-, 12-, 10-, 8-, and 6-mers) that mimic and modify the C-terminal domain of apoA-I (residues 220-241) were synthesized. At a concentration of 0.3 mM, the 6- and 8-mer peptides did not present any surface activity. In case of the 10-mer peptide, the aqueous surface tension initially decreased and reached a constant value of 51.9 mN/m with the 14-, 18-, and 22-mer peptides. Moreover, upon mixing the surface-active peptides (14-, 18-, and 22-mers) with dipalmitoylphosphatidylcholine (DMPC) liposomes (2.5:1, peptide : DMPC), the turbid DMPC liposome solution rapidly became transparent. Further analysis of this solution by negative-stain transmission electron microscopy (NS-TEM) indicated the presence of disk-like nanostructures. The average diameter of the nanodiscs formed was 9.5 ± 2.7 nm for the 22-mer, 8.1 ± 2.7 nm for the 18-mer, and 25.5 ± 8.5 nm for the 14-mer peptides. These results clearly demonstrate that the surface properties of peptides play a critical role in nanodisc formation. Furthermore, the minimum length of an amphiphilic peptide from the C-terminal of apoA-I protein that can lead to nanodisc formation is 14 amino acid residues. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Imura</LastName>
<ForeName>Tomohiro</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsukui</LastName>
<ForeName>Yohei</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sakai</LastName>
<ForeName>Kenichi</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sakai</LastName>
<ForeName>Hideki</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Taira</LastName>
<ForeName>Toshiaki</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kitamoto</LastName>
<ForeName>Dai</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>J Oleo Sci</MedlineTA>
<NlmUniqueID>101175339</NlmUniqueID>
<ISSNLinking>1345-8957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016632">Apolipoprotein A-I</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008051">Lipid Bilayers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008055">Lipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008081">Liposomes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2644-64-6</RegistryNumber>
<NameOfSubstance UI="D015060">1,2-Dipalmitoylphosphatidylcholine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015060" MajorTopicYN="N">1,2-Dipalmitoylphosphatidylcholine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016632" MajorTopicYN="N">Apolipoprotein A-I</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008051" MajorTopicYN="N">Lipid Bilayers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008055" MajorTopicYN="N">Lipids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008081" MajorTopicYN="N">Liposomes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046529" MajorTopicYN="N">Microscopy, Electron, Transmission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053758" MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013500" MajorTopicYN="N">Surface Tension</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25341499</ArticleId>
<ArticleId IdType="pii">DN/JST.JSTAGE/jos/ess14172</ArticleId>
<ArticleId IdType="doi">10.5650/jos.ess14172</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001807 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001807 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25341499
   |texte=   Minimum amino acid residues of an α-helical peptide leading to lipid nanodisc formation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25341499" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021