Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterizing the transmission potential of zoonotic infections from minor outbreaks.

Identifieur interne : 001651 ( PubMed/Curation ); précédent : 001650; suivant : 001652

Characterizing the transmission potential of zoonotic infections from minor outbreaks.

Auteurs : Adam J. Kucharski [États-Unis] ; W John Edmunds [Royaume-Uni]

Source :

RBID : pubmed:25860289

Descripteurs français

English descriptors

Abstract

The transmission potential of a novel infection depends on both the inherent transmissibility of a pathogen, and the level of susceptibility in the host population. However, distinguishing between these pathogen- and population-specific properties typically requires detailed serological studies, which are rarely available in the early stages of an outbreak. Using a simple transmission model that incorporates age-stratified social mixing patterns, we present a novel method for characterizing the transmission potential of subcritical infections, which have effective reproduction number R<1, from readily available data on the size of outbreaks. We show that the model can identify the extent to which outbreaks are driven by inherent pathogen transmissibility and pre-existing population immunity, and can generate unbiased estimates of the effective reproduction number. Applying the method to real-life infections, we obtained accurate estimates for the degree of age-specific immunity against monkeypox, influenza A(H5N1) and A(H7N9), and refined existing estimates of the reproduction number. Our results also suggest minimal pre-existing immunity to MERS-CoV in humans. The approach we describe can therefore provide crucial information about novel infections before serological surveys and other detailed analyses are available. The methods would also be applicable to data stratified by factors such as profession or location, which would make it possible to measure the transmission potential of emerging infections in a wide range of settings.

DOI: 10.1371/journal.pcbi.1004154
PubMed: 25860289

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25860289

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterizing the transmission potential of zoonotic infections from minor outbreaks.</title>
<author>
<name sortKey="Kucharski, Adam J" sort="Kucharski, Adam J" uniqKey="Kucharski A" first="Adam J" last="Kucharski">Adam J. Kucharski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Fogarty International Center, National Institutes of Health, Bethesda, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Edmunds, W John" sort="Edmunds, W John" uniqKey="Edmunds W" first="W John" last="Edmunds">W John Edmunds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25860289</idno>
<idno type="pmid">25860289</idno>
<idno type="doi">10.1371/journal.pcbi.1004154</idno>
<idno type="wicri:Area/PubMed/Corpus">001651</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001651</idno>
<idno type="wicri:Area/PubMed/Curation">001651</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001651</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterizing the transmission potential of zoonotic infections from minor outbreaks.</title>
<author>
<name sortKey="Kucharski, Adam J" sort="Kucharski, Adam J" uniqKey="Kucharski A" first="Adam J" last="Kucharski">Adam J. Kucharski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Fogarty International Center, National Institutes of Health, Bethesda, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Edmunds, W John" sort="Edmunds, W John" uniqKey="Edmunds W" first="W John" last="Edmunds">W John Edmunds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Age Distribution</term>
<term>Animals</term>
<term>Communicable Diseases, Emerging (epidemiology)</term>
<term>Communicable Diseases, Emerging (transmission)</term>
<term>Computer Simulation</term>
<term>Disease Outbreaks (statistics & numerical data)</term>
<term>Disease Susceptibility (epidemiology)</term>
<term>Humans</term>
<term>Incidence</term>
<term>Models, Statistical</term>
<term>Risk Assessment (methods)</term>
<term>Zoonoses (epidemiology)</term>
<term>Zoonoses (transmission)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Flambées de maladies ()</term>
<term>Humains</term>
<term>Incidence</term>
<term>Maladies transmissibles émergentes (transmission)</term>
<term>Maladies transmissibles émergentes (épidémiologie)</term>
<term>Modèles statistiques</term>
<term>Répartition par âge</term>
<term>Simulation numérique</term>
<term>Susceptibilité à une maladie (épidémiologie)</term>
<term>Zoonoses (transmission)</term>
<term>Zoonoses (épidémiologie)</term>
<term>Évaluation des risques ()</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Communicable Diseases, Emerging</term>
<term>Disease Susceptibility</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Risk Assessment</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Disease Outbreaks</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Communicable Diseases, Emerging</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Maladies transmissibles émergentes</term>
<term>Susceptibilité à une maladie</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Age Distribution</term>
<term>Animals</term>
<term>Computer Simulation</term>
<term>Humans</term>
<term>Incidence</term>
<term>Models, Statistical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Flambées de maladies</term>
<term>Humains</term>
<term>Incidence</term>
<term>Modèles statistiques</term>
<term>Répartition par âge</term>
<term>Simulation numérique</term>
<term>Évaluation des risques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The transmission potential of a novel infection depends on both the inherent transmissibility of a pathogen, and the level of susceptibility in the host population. However, distinguishing between these pathogen- and population-specific properties typically requires detailed serological studies, which are rarely available in the early stages of an outbreak. Using a simple transmission model that incorporates age-stratified social mixing patterns, we present a novel method for characterizing the transmission potential of subcritical infections, which have effective reproduction number R<1, from readily available data on the size of outbreaks. We show that the model can identify the extent to which outbreaks are driven by inherent pathogen transmissibility and pre-existing population immunity, and can generate unbiased estimates of the effective reproduction number. Applying the method to real-life infections, we obtained accurate estimates for the degree of age-specific immunity against monkeypox, influenza A(H5N1) and A(H7N9), and refined existing estimates of the reproduction number. Our results also suggest minimal pre-existing immunity to MERS-CoV in humans. The approach we describe can therefore provide crucial information about novel infections before serological surveys and other detailed analyses are available. The methods would also be applicable to data stratified by factors such as profession or location, which would make it possible to measure the transmission potential of emerging infections in a wide range of settings. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25860289</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterizing the transmission potential of zoonotic infections from minor outbreaks.</ArticleTitle>
<Pagination>
<MedlinePgn>e1004154</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1004154</ELocationID>
<Abstract>
<AbstractText>The transmission potential of a novel infection depends on both the inherent transmissibility of a pathogen, and the level of susceptibility in the host population. However, distinguishing between these pathogen- and population-specific properties typically requires detailed serological studies, which are rarely available in the early stages of an outbreak. Using a simple transmission model that incorporates age-stratified social mixing patterns, we present a novel method for characterizing the transmission potential of subcritical infections, which have effective reproduction number R<1, from readily available data on the size of outbreaks. We show that the model can identify the extent to which outbreaks are driven by inherent pathogen transmissibility and pre-existing population immunity, and can generate unbiased estimates of the effective reproduction number. Applying the method to real-life infections, we obtained accurate estimates for the degree of age-specific immunity against monkeypox, influenza A(H5N1) and A(H7N9), and refined existing estimates of the reproduction number. Our results also suggest minimal pre-existing immunity to MERS-CoV in humans. The approach we describe can therefore provide crucial information about novel infections before serological surveys and other detailed analyses are available. The methods would also be applicable to data stratified by factors such as profession or location, which would make it possible to measure the transmission potential of emerging infections in a wide range of settings. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kucharski</LastName>
<ForeName>Adam J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Edmunds</LastName>
<ForeName>W John</ForeName>
<Initials>WJ</Initials>
<AffiliationInfo>
<Affiliation>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MR/K021524/1</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>04</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017677" MajorTopicYN="N">Age Distribution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021821" MajorTopicYN="N">Communicable Diseases, Emerging</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="N">Disease Outbreaks</DescriptorName>
<QualifierName UI="Q000706" MajorTopicYN="Y">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004198" MajorTopicYN="N">Disease Susceptibility</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="Y">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018570" MajorTopicYN="N">Risk Assessment</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015047" MajorTopicYN="N">Zoonoses</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>10</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25860289</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1004154</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-14-01912</ArticleId>
<ArticleId IdType="pmc">PMC4393285</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Epidemiol. 2000 Jun 1;151(11):1039-48; discussion 1049-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Math Biol. 1990;28(4):365-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2117040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemics. 2013 Sep;5(3):131-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24021520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2012 Feb 7;294:48-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22079419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 1997 Jul 22;264(1384):949-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9263464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16262-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 11;426(6967):658-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemics. 2011 Jun;3(2):125-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21624784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2011;16(32). pii: 19941</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21871222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2014 Feb 6;370(6):520-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23614499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2014 Jun 22;281(1785):20140268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24789897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med. 2013;11:214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24083506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2003 Apr;4(2):279-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2009 Nov 22;276(1675):3937-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19692402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24778238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2013;9(5):e1002993</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23658504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(2):e16965</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21347264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2014 Jul;60(3):305-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24793969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2010 Mar 27;375(9720):1100-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20096450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull World Health Organ. 1980;58(2):165-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6249508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2013 Aug 24;382(9893):694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23831141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemics. 2011 Sep;3(3-4):143-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2015 Apr;143(6):1119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25115493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Jun;3(6):e212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16640458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2007 Oct 22;4(16):893-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17609176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Curr. 2014 Mar 07;6:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24619563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2014 Jan;14(1):50-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24239323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hyg (Lond). 1985 Oct;95(2):419-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4067297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2008 Mar 25;5(3):e74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18366252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Dec 4;326(5958):1362-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Epidemiol. 1988 Sep;17(3):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2850277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2006 Nov 15;164(10):936-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Jun;10(6):e1004206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24968312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1982 Feb 26;215(4536):1053-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7063839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2014 Jun;10(6):e1003635</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24921923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2004 Jul 29;359(1447):1091-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15306395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Jun 13;368(24):2339-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23718151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2014 Dec 19;194:175-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24670324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Nov 17;438(7066):355-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16292310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29971</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238686</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001651 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001651 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25860289
   |texte=   Characterizing the transmission potential of zoonotic infections from minor outbreaks.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25860289" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021