Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Middle East Respiratory Syndrome Coronavirus nsp1 Inhibits Host Gene Expression by Selectively Targeting mRNAs Transcribed in the Nucleus while Sparing mRNAs of Cytoplasmic Origin.

Identifieur interne : 001490 ( PubMed/Curation ); précédent : 001489; suivant : 001491

Middle East Respiratory Syndrome Coronavirus nsp1 Inhibits Host Gene Expression by Selectively Targeting mRNAs Transcribed in the Nucleus while Sparing mRNAs of Cytoplasmic Origin.

Auteurs : Kumari G. Lokugamage [États-Unis] ; Krishna Narayanan [États-Unis] ; Keisuke Nakagawa [États-Unis] ; Kaori Terasaki [États-Unis] ; Sydney I. Ramirez [États-Unis] ; Chien-Te K. Tseng [États-Unis] ; Shinji Makino [États-Unis]

Source :

RBID : pubmed:26311885

Descripteurs français

English descriptors

Abstract

The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome CoV (SARS-CoV) represent highly pathogenic human CoVs that share a property to inhibit host gene expression at the posttranscriptional level. Similar to the nonstructural protein 1 (nsp1) of SARS-CoV that inhibits host gene expression at the translational level, we report that MERS-CoV nsp1 also exhibits a conserved function to negatively regulate host gene expression by inhibiting host mRNA translation and inducing the degradation of host mRNAs. Furthermore, like SARS-CoV nsp1, the mRNA degradation activity of MERS-CoV nsp1, most probably triggered by its ability to induce an endonucleolytic RNA cleavage, was separable from its translation inhibitory function. Despite these functional similarities, MERS-CoV nsp1 used a strikingly different strategy that selectively targeted translationally competent host mRNAs for inhibition. While SARS-CoV nsp1 is localized exclusively in the cytoplasm and binds to the 40S ribosomal subunit to gain access to translating mRNAs, MERS-CoV nsp1 was distributed in both the nucleus and the cytoplasm and did not bind stably to the 40S subunit, suggesting a distinctly different mode of targeting translating mRNAs. Interestingly, consistent with this notion, MERS-CoV nsp1 selectively targeted mRNAs, which are transcribed in the nucleus and transported to the cytoplasm, for translation inhibition and mRNA degradation but spared exogenous mRNAs introduced directly into the cytoplasm or virus-like mRNAs that originate in the cytoplasm. Collectively, these data point toward a novel viral strategy wherein the cytoplasmic origin of MERS-CoV mRNAs facilitates their escape from the inhibitory effects of MERS-CoV nsp1.

DOI: 10.1128/JVI.01352-15
PubMed: 26311885

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26311885

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Middle East Respiratory Syndrome Coronavirus nsp1 Inhibits Host Gene Expression by Selectively Targeting mRNAs Transcribed in the Nucleus while Sparing mRNAs of Cytoplasmic Origin.</title>
<author>
<name sortKey="Lokugamage, Kumari G" sort="Lokugamage, Kumari G" uniqKey="Lokugamage K" first="Kumari G" last="Lokugamage">Kumari G. Lokugamage</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Narayanan, Krishna" sort="Narayanan, Krishna" uniqKey="Narayanan K" first="Krishna" last="Narayanan">Krishna Narayanan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Nakagawa, Keisuke" sort="Nakagawa, Keisuke" uniqKey="Nakagawa K" first="Keisuke" last="Nakagawa">Keisuke Nakagawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Terasaki, Kaori" sort="Terasaki, Kaori" uniqKey="Terasaki K" first="Kaori" last="Terasaki">Kaori Terasaki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ramirez, Sydney I" sort="Ramirez, Sydney I" uniqKey="Ramirez S" first="Sydney I" last="Ramirez">Sydney I. Ramirez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tseng, Chien Te K" sort="Tseng, Chien Te K" uniqKey="Tseng C" first="Chien-Te K" last="Tseng">Chien-Te K. Tseng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Makino, Shinji" sort="Makino, Shinji" uniqKey="Makino S" first="Shinji" last="Makino">Shinji Makino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA shmakino@utmb.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26311885</idno>
<idno type="pmid">26311885</idno>
<idno type="doi">10.1128/JVI.01352-15</idno>
<idno type="wicri:Area/PubMed/Corpus">001490</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001490</idno>
<idno type="wicri:Area/PubMed/Curation">001490</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001490</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Middle East Respiratory Syndrome Coronavirus nsp1 Inhibits Host Gene Expression by Selectively Targeting mRNAs Transcribed in the Nucleus while Sparing mRNAs of Cytoplasmic Origin.</title>
<author>
<name sortKey="Lokugamage, Kumari G" sort="Lokugamage, Kumari G" uniqKey="Lokugamage K" first="Kumari G" last="Lokugamage">Kumari G. Lokugamage</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Narayanan, Krishna" sort="Narayanan, Krishna" uniqKey="Narayanan K" first="Krishna" last="Narayanan">Krishna Narayanan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Nakagawa, Keisuke" sort="Nakagawa, Keisuke" uniqKey="Nakagawa K" first="Keisuke" last="Nakagawa">Keisuke Nakagawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Terasaki, Kaori" sort="Terasaki, Kaori" uniqKey="Terasaki K" first="Kaori" last="Terasaki">Kaori Terasaki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ramirez, Sydney I" sort="Ramirez, Sydney I" uniqKey="Ramirez S" first="Sydney I" last="Ramirez">Sydney I. Ramirez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tseng, Chien Te K" sort="Tseng, Chien Te K" uniqKey="Tseng C" first="Chien-Te K" last="Tseng">Chien-Te K. Tseng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Makino, Shinji" sort="Makino, Shinji" uniqKey="Makino S" first="Shinji" last="Makino">Shinji Makino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA shmakino@utmb.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blotting, Northern</term>
<term>Blotting, Western</term>
<term>Cell Nucleus (metabolism)</term>
<term>Cytoplasm (metabolism)</term>
<term>DNA Primers</term>
<term>Dipeptidyl Peptidase 4 (metabolism)</term>
<term>Electroporation</term>
<term>Gene Expression Regulation (genetics)</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Microscopy, Confocal</term>
<term>Middle East Respiratory Syndrome Coronavirus (genetics)</term>
<term>Middle East Respiratory Syndrome Coronavirus (metabolism)</term>
<term>Plasmids (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>Amorces ADN</term>
<term>Cellules HEK293</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (génétique)</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (métabolisme)</term>
<term>Cytoplasme (métabolisme)</term>
<term>Dipeptidyl peptidase 4 (métabolisme)</term>
<term>Humains</term>
<term>Microscopie confocale</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Plasmides (génétique)</term>
<term>Protéines virales non structurales (métabolisme)</term>
<term>RT-PCR</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes (génétique)</term>
<term>Technique de Northern</term>
<term>Technique de Western</term>
<term>Électroporation</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Dipeptidyl Peptidase 4</term>
<term>RNA, Messenger</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA Primers</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation</term>
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
<term>Plasmides</term>
<term>Régulation de l'expression des gènes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Cytoplasm</term>
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
<term>Cytoplasme</term>
<term>Dipeptidyl peptidase 4</term>
<term>Noyau de la cellule</term>
<term>Protéines virales non structurales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Northern</term>
<term>Blotting, Western</term>
<term>Electroporation</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Microscopy, Confocal</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Amorces ADN</term>
<term>Cellules HEK293</term>
<term>Humains</term>
<term>Microscopie confocale</term>
<term>RT-PCR</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Technique de Northern</term>
<term>Technique de Western</term>
<term>Électroporation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome CoV (SARS-CoV) represent highly pathogenic human CoVs that share a property to inhibit host gene expression at the posttranscriptional level. Similar to the nonstructural protein 1 (nsp1) of SARS-CoV that inhibits host gene expression at the translational level, we report that MERS-CoV nsp1 also exhibits a conserved function to negatively regulate host gene expression by inhibiting host mRNA translation and inducing the degradation of host mRNAs. Furthermore, like SARS-CoV nsp1, the mRNA degradation activity of MERS-CoV nsp1, most probably triggered by its ability to induce an endonucleolytic RNA cleavage, was separable from its translation inhibitory function. Despite these functional similarities, MERS-CoV nsp1 used a strikingly different strategy that selectively targeted translationally competent host mRNAs for inhibition. While SARS-CoV nsp1 is localized exclusively in the cytoplasm and binds to the 40S ribosomal subunit to gain access to translating mRNAs, MERS-CoV nsp1 was distributed in both the nucleus and the cytoplasm and did not bind stably to the 40S subunit, suggesting a distinctly different mode of targeting translating mRNAs. Interestingly, consistent with this notion, MERS-CoV nsp1 selectively targeted mRNAs, which are transcribed in the nucleus and transported to the cytoplasm, for translation inhibition and mRNA degradation but spared exogenous mRNAs introduced directly into the cytoplasm or virus-like mRNAs that originate in the cytoplasm. Collectively, these data point toward a novel viral strategy wherein the cytoplasmic origin of MERS-CoV mRNAs facilitates their escape from the inhibitory effects of MERS-CoV nsp1.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26311885</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>89</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2015</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Middle East Respiratory Syndrome Coronavirus nsp1 Inhibits Host Gene Expression by Selectively Targeting mRNAs Transcribed in the Nucleus while Sparing mRNAs of Cytoplasmic Origin.</ArticleTitle>
<Pagination>
<MedlinePgn>10970-81</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01352-15</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome CoV (SARS-CoV) represent highly pathogenic human CoVs that share a property to inhibit host gene expression at the posttranscriptional level. Similar to the nonstructural protein 1 (nsp1) of SARS-CoV that inhibits host gene expression at the translational level, we report that MERS-CoV nsp1 also exhibits a conserved function to negatively regulate host gene expression by inhibiting host mRNA translation and inducing the degradation of host mRNAs. Furthermore, like SARS-CoV nsp1, the mRNA degradation activity of MERS-CoV nsp1, most probably triggered by its ability to induce an endonucleolytic RNA cleavage, was separable from its translation inhibitory function. Despite these functional similarities, MERS-CoV nsp1 used a strikingly different strategy that selectively targeted translationally competent host mRNAs for inhibition. While SARS-CoV nsp1 is localized exclusively in the cytoplasm and binds to the 40S ribosomal subunit to gain access to translating mRNAs, MERS-CoV nsp1 was distributed in both the nucleus and the cytoplasm and did not bind stably to the 40S subunit, suggesting a distinctly different mode of targeting translating mRNAs. Interestingly, consistent with this notion, MERS-CoV nsp1 selectively targeted mRNAs, which are transcribed in the nucleus and transported to the cytoplasm, for translation inhibition and mRNA degradation but spared exogenous mRNAs introduced directly into the cytoplasm or virus-like mRNAs that originate in the cytoplasm. Collectively, these data point toward a novel viral strategy wherein the cytoplasmic origin of MERS-CoV mRNAs facilitates their escape from the inhibitory effects of MERS-CoV nsp1.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human CoV that emerged in Saudi Arabia in 2012. MERS-CoV has a zoonotic origin and poses a major threat to public health. However, little is known about the viral factors contributing to the high virulence of MERS-CoV. Many animal viruses, including CoVs, encode proteins that interfere with host gene expression, including those involved in antiviral immune responses, and these viral proteins are often major virulence factors. The nonstructural protein 1 (nsp1) of CoVs is one such protein that inhibits host gene expression and is a major virulence factor. This study presents evidence for a strategy used by MERS-CoV nsp1 to inhibit host gene expression that has not been described previously for any viral protein. The present study represents a meaningful step toward a better understanding of the factors and molecular mechanisms governing the virulence and pathogenesis of MERS-CoV.</AbstractText>
<CopyrightInformation>Copyright © 2015, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lokugamage</LastName>
<ForeName>Kumari G</ForeName>
<Initials>KG</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Narayanan</LastName>
<ForeName>Krishna</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nakagawa</LastName>
<ForeName>Keisuke</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Terasaki</LastName>
<ForeName>Kaori</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ramirez</LastName>
<ForeName>Sydney I</ForeName>
<Initials>SI</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tseng</LastName>
<ForeName>Chien-Te K</ForeName>
<Initials>CT</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Makino</LastName>
<ForeName>Shinji</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA shmakino@utmb.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AI101772</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI99107</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI117445</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI117445</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI114657</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI099107</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI101772</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI114657</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>08</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.14.5</RegistryNumber>
<NameOfSubstance UI="C042807">DPP4 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.14.5</RegistryNumber>
<NameOfSubstance UI="D018819">Dipeptidyl Peptidase 4</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015152" MajorTopicYN="N">Blotting, Northern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018819" MajorTopicYN="N">Dipeptidyl Peptidase 4</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018274" MajorTopicYN="N">Electroporation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>05</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>08</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26311885</ArticleId>
<ArticleId IdType="pii">JVI.01352-15</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01352-15</ArticleId>
<ArticleId IdType="pmc">PMC4621111</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2012 Apr;86(7):4034-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22278239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17031-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Oct;86(20):11128-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22855488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Dec;86(24):13598-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23035226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Jun 27;368(26):2487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23718156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Feb;78(3):1063-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14722261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(18):9977-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Jan;73(1):251-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Jun;73(6):5018-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10233964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(7):3151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17202208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Aug 10;3(8):e109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17696607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 May;82(9):4471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 Mar 15;385(2):400-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19155037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 May;83(10):5282-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19264783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Nov;16(11):1134-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19838190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jan;85(1):638-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21047955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Dec;7(12):e1002433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Feb;75(3):1371-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(11):6336-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2013 Jun 29;381(9885):2265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23727167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Aug 1;369(5):407-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23782161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Aug 29;369(9):884-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23923992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 Nov;19(11):1819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24206838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2014 Mar;8(3):e2746</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24651859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014;5(3):e01146-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24781747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014;5(3):e01174-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24846384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 May 22;54(4):547-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24856220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2014 Jun 26;370(26):2499-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24896817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2014 Dec 19;194:49-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24355834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Apr;89(7):3598-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25589656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Apr 16;202:89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25432065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Innate Immun. 2015;7(5):450-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2002 Apr;83(Pt 4):795-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Sep;86(17):9527-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22740404</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001490 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001490 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26311885
   |texte=   Middle East Respiratory Syndrome Coronavirus nsp1 Inhibits Host Gene Expression by Selectively Targeting mRNAs Transcribed in the Nucleus while Sparing mRNAs of Cytoplasmic Origin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26311885" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021