Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Methylated Cytosines Mutate to Transcription Factor Binding Sites that Drive Tetrapod Evolution.

Identifieur interne : 001409 ( PubMed/Curation ); précédent : 001408; suivant : 001410

Methylated Cytosines Mutate to Transcription Factor Binding Sites that Drive Tetrapod Evolution.

Auteurs : Ximiao He [États-Unis] ; Desiree Tillo [États-Unis] ; Jeff Vierstra [États-Unis] ; Khund-Sayeed Syed [États-Unis] ; Callie Deng [États-Unis] ; G Jordan Ray [États-Unis] ; John Stamatoyannopoulos [États-Unis] ; Peter C. Fitzgerald [États-Unis] ; Charles Vinson [Israël]

Source :

RBID : pubmed:26507798

Descripteurs français

English descriptors

Abstract

In mammals, the cytosine in CG dinucleotides is typically methylated producing 5-methylcytosine (5mC), a chemically less stable form of cytosine that can spontaneously deaminate to thymidine resulting in a T•G mismatched base pair. Unlike other eukaryotes that efficiently repair this mismatched base pair back to C•G, in mammals, 5mCG deamination is mutagenic, sometimes producing TG dinucleotides, explaining the depletion of CG dinucleotides in mammalian genomes. It was suggested that new TG dinucleotides generate genetic diversity that may be critical for evolutionary change. We tested this conjecture by examining the DNA sequence properties of regulatory sequences identified by DNase I hypersensitive sites (DHSs) in human and mouse genomes. We hypothesized that the new TG dinucleotides generate transcription factor binding sites (TFBS) that become tissue-specific DHSs (TS-DHSs). We find that 8-mers containing the CG dinucleotide are enriched in DHSs in both species. However, 8-mers containing a TG and no CG dinucleotide are preferentially enriched in TS-DHSs when compared with 8-mers with neither a TG nor a CG dinucleotide. The most enriched 8-mer with a TG and no CG dinucleotide in tissue-specific regulatory regions in both genomes is the AP-1 motif ( TG: A(C)/GT CA: N), and we find evidence that TG dinucleotides in the AP-1 motif arose from CG dinucleotides. Additional TS-DHS-enriched TFBS containing the TG/CA dinucleotide are the E-Box motif (G CA: GC TG: C), the NF-1 motif (GG CATG: CC), and the GR (glucocorticoid receptor) motif (G-A CATG: T-C). Our results support the suggestion that cytosine methylation is mutagenic in tetrapods producing TG dinucleotides that create TFBS that drive evolution.

DOI: 10.1093/gbe/evv205
PubMed: 26507798

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26507798

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Methylated Cytosines Mutate to Transcription Factor Binding Sites that Drive Tetrapod Evolution.</title>
<author>
<name sortKey="He, Ximiao" sort="He, Ximiao" uniqKey="He X" first="Ximiao" last="He">Ximiao He</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tillo, Desiree" sort="Tillo, Desiree" uniqKey="Tillo D" first="Desiree" last="Tillo">Desiree Tillo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Vierstra, Jeff" sort="Vierstra, Jeff" uniqKey="Vierstra J" first="Jeff" last="Vierstra">Jeff Vierstra</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Genome Sciences, University of Washington.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Syed, Khund Sayeed" sort="Syed, Khund Sayeed" uniqKey="Syed K" first="Khund-Sayeed" last="Syed">Khund-Sayeed Syed</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Deng, Callie" sort="Deng, Callie" uniqKey="Deng C" first="Callie" last="Deng">Callie Deng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ray, G Jordan" sort="Ray, G Jordan" uniqKey="Ray G" first="G Jordan" last="Ray">G Jordan Ray</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Stamatoyannopoulos, John" sort="Stamatoyannopoulos, John" uniqKey="Stamatoyannopoulos J" first="John" last="Stamatoyannopoulos">John Stamatoyannopoulos</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Genome Sciences, University of Washington.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Fitzgerald, Peter C" sort="Fitzgerald, Peter C" uniqKey="Fitzgerald P" first="Peter C" last="Fitzgerald">Peter C. Fitzgerald</name>
<affiliation wicri:level="2">
<nlm:affiliation>Genome Analysis Unit, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Genome Analysis Unit, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Vinson, Charles" sort="Vinson, Charles" uniqKey="Vinson C" first="Charles" last="Vinson">Charles Vinson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland vinsonc@mail.nih.gov.</nlm:affiliation>
<country wicri:rule="url">Israël</country>
<wicri:regionArea>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26507798</idno>
<idno type="pmid">26507798</idno>
<idno type="doi">10.1093/gbe/evv205</idno>
<idno type="wicri:Area/PubMed/Corpus">001409</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001409</idno>
<idno type="wicri:Area/PubMed/Curation">001409</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001409</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Methylated Cytosines Mutate to Transcription Factor Binding Sites that Drive Tetrapod Evolution.</title>
<author>
<name sortKey="He, Ximiao" sort="He, Ximiao" uniqKey="He X" first="Ximiao" last="He">Ximiao He</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tillo, Desiree" sort="Tillo, Desiree" uniqKey="Tillo D" first="Desiree" last="Tillo">Desiree Tillo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Vierstra, Jeff" sort="Vierstra, Jeff" uniqKey="Vierstra J" first="Jeff" last="Vierstra">Jeff Vierstra</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Genome Sciences, University of Washington.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Syed, Khund Sayeed" sort="Syed, Khund Sayeed" uniqKey="Syed K" first="Khund-Sayeed" last="Syed">Khund-Sayeed Syed</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Deng, Callie" sort="Deng, Callie" uniqKey="Deng C" first="Callie" last="Deng">Callie Deng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ray, G Jordan" sort="Ray, G Jordan" uniqKey="Ray G" first="G Jordan" last="Ray">G Jordan Ray</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Stamatoyannopoulos, John" sort="Stamatoyannopoulos, John" uniqKey="Stamatoyannopoulos J" first="John" last="Stamatoyannopoulos">John Stamatoyannopoulos</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Genome Sciences, University of Washington.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Fitzgerald, Peter C" sort="Fitzgerald, Peter C" uniqKey="Fitzgerald P" first="Peter C" last="Fitzgerald">Peter C. Fitzgerald</name>
<affiliation wicri:level="2">
<nlm:affiliation>Genome Analysis Unit, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Genome Analysis Unit, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Vinson, Charles" sort="Vinson, Charles" uniqKey="Vinson C" first="Charles" last="Vinson">Charles Vinson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland vinsonc@mail.nih.gov.</nlm:affiliation>
<country wicri:rule="url">Israël</country>
<wicri:regionArea>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genome biology and evolution</title>
<idno type="eISSN">1759-6653</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>5-Methylcytosine (chemistry)</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>Biological Evolution</term>
<term>Cytosine (chemistry)</term>
<term>DNA Methylation</term>
<term>Dinucleoside Phosphates (genetics)</term>
<term>Humans</term>
<term>Mice</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Protein Binding</term>
<term>Transcription Factors (chemistry)</term>
<term>Transcription Factors (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>5-Méthyl-cytosine ()</term>
<term>Animaux</term>
<term>Cytosine ()</term>
<term>Dinucléoside phosphates (génétique)</term>
<term>Facteurs de transcription ()</term>
<term>Facteurs de transcription (génétique)</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Méthylation de l'ADN</term>
<term>Sites de fixation</term>
<term>Souris</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Évolution biologique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>5-Methylcytosine</term>
<term>Cytosine</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Dinucleoside Phosphates</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Dinucléoside phosphates</term>
<term>Facteurs de transcription</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Binding Sites</term>
<term>Biological Evolution</term>
<term>DNA Methylation</term>
<term>Humans</term>
<term>Mice</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>5-Méthyl-cytosine</term>
<term>Animaux</term>
<term>Cytosine</term>
<term>Facteurs de transcription</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Méthylation de l'ADN</term>
<term>Sites de fixation</term>
<term>Souris</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In mammals, the cytosine in CG dinucleotides is typically methylated producing 5-methylcytosine (5mC), a chemically less stable form of cytosine that can spontaneously deaminate to thymidine resulting in a T•G mismatched base pair. Unlike other eukaryotes that efficiently repair this mismatched base pair back to C•G, in mammals, 5mCG deamination is mutagenic, sometimes producing TG dinucleotides, explaining the depletion of CG dinucleotides in mammalian genomes. It was suggested that new TG dinucleotides generate genetic diversity that may be critical for evolutionary change. We tested this conjecture by examining the DNA sequence properties of regulatory sequences identified by DNase I hypersensitive sites (DHSs) in human and mouse genomes. We hypothesized that the new TG dinucleotides generate transcription factor binding sites (TFBS) that become tissue-specific DHSs (TS-DHSs). We find that 8-mers containing the CG dinucleotide are enriched in DHSs in both species. However, 8-mers containing a TG and no CG dinucleotide are preferentially enriched in TS-DHSs when compared with 8-mers with neither a TG nor a CG dinucleotide. The most enriched 8-mer with a TG and no CG dinucleotide in tissue-specific regulatory regions in both genomes is the AP-1 motif ( TG: A(C)/GT CA: N), and we find evidence that TG dinucleotides in the AP-1 motif arose from CG dinucleotides. Additional TS-DHS-enriched TFBS containing the TG/CA dinucleotide are the E-Box motif (G CA: GC TG: C), the NF-1 motif (GG CATG: CC), and the GR (glucocorticoid receptor) motif (G-A CATG: T-C). Our results support the suggestion that cytosine methylation is mutagenic in tetrapods producing TG dinucleotides that create TFBS that drive evolution. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26507798</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1759-6653</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>Genome biology and evolution</Title>
<ISOAbbreviation>Genome Biol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Methylated Cytosines Mutate to Transcription Factor Binding Sites that Drive Tetrapod Evolution.</ArticleTitle>
<Pagination>
<MedlinePgn>3155-69</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/gbe/evv205</ELocationID>
<Abstract>
<AbstractText>In mammals, the cytosine in CG dinucleotides is typically methylated producing 5-methylcytosine (5mC), a chemically less stable form of cytosine that can spontaneously deaminate to thymidine resulting in a T•G mismatched base pair. Unlike other eukaryotes that efficiently repair this mismatched base pair back to C•G, in mammals, 5mCG deamination is mutagenic, sometimes producing TG dinucleotides, explaining the depletion of CG dinucleotides in mammalian genomes. It was suggested that new TG dinucleotides generate genetic diversity that may be critical for evolutionary change. We tested this conjecture by examining the DNA sequence properties of regulatory sequences identified by DNase I hypersensitive sites (DHSs) in human and mouse genomes. We hypothesized that the new TG dinucleotides generate transcription factor binding sites (TFBS) that become tissue-specific DHSs (TS-DHSs). We find that 8-mers containing the CG dinucleotide are enriched in DHSs in both species. However, 8-mers containing a TG and no CG dinucleotide are preferentially enriched in TS-DHSs when compared with 8-mers with neither a TG nor a CG dinucleotide. The most enriched 8-mer with a TG and no CG dinucleotide in tissue-specific regulatory regions in both genomes is the AP-1 motif ( TG: A(C)/GT CA: N), and we find evidence that TG dinucleotides in the AP-1 motif arose from CG dinucleotides. Additional TS-DHS-enriched TFBS containing the TG/CA dinucleotide are the E-Box motif (G CA: GC TG: C), the NF-1 motif (GG CATG: CC), and the GR (glucocorticoid receptor) motif (G-A CATG: T-C). Our results support the suggestion that cytosine methylation is mutagenic in tetrapods producing TG dinucleotides that create TFBS that drive evolution. </AbstractText>
<CopyrightInformation>Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2015. This work is written by US Government employees and is in the public domain in the US.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Ximiao</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tillo</LastName>
<ForeName>Desiree</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vierstra</LastName>
<ForeName>Jeff</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Genome Sciences, University of Washington.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Syed</LastName>
<ForeName>Khund-Sayeed</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deng</LastName>
<ForeName>Callie</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ray</LastName>
<ForeName>G Jordan</ForeName>
<Initials>GJ</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stamatoyannopoulos</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Genome Sciences, University of Washington.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>FitzGerald</LastName>
<ForeName>Peter C</ForeName>
<Initials>PC</Initials>
<AffiliationInfo>
<Affiliation>Genome Analysis Unit, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vinson</LastName>
<ForeName>Charles</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland vinsonc@mail.nih.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol Evol</MedlineTA>
<NlmUniqueID>101509707</NlmUniqueID>
<ISSNLinking>1759-6653</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015226">Dinucleoside Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2382-65-2</RegistryNumber>
<NameOfSubstance UI="C015772">cytidylyl-3'-5'-guanosine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6R795CQT4H</RegistryNumber>
<NameOfSubstance UI="D044503">5-Methylcytosine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8J337D1HZY</RegistryNumber>
<NameOfSubstance UI="D003596">Cytosine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D044503" MajorTopicYN="N">5-Methylcytosine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003596" MajorTopicYN="N">Cytosine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019175" MajorTopicYN="Y">DNA Methylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015226" MajorTopicYN="N">Dinucleoside Phosphates</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AP-1</Keyword>
<Keyword MajorTopicYN="N">CG methylation</Keyword>
<Keyword MajorTopicYN="N">TFBS</Keyword>
<Keyword MajorTopicYN="N">TG dinucleotide</Keyword>
<Keyword MajorTopicYN="N">coelacanth</Keyword>
<Keyword MajorTopicYN="N">tissue specific</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26507798</ArticleId>
<ArticleId IdType="pii">evv205</ArticleId>
<ArticleId IdType="doi">10.1093/gbe/evv205</ArticleId>
<ArticleId IdType="pmc">PMC4994754</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Epigenetics Chromatin. 2014 Dec 02;7:35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25699092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19584245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2001 Dec;1(6):749-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11740937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Feb 14;1470(1):M1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Nov 17;246(4932):911-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2683088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gynecol Oncol. 2014 Feb;132(2):462-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24374023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 1993;28(2):83-126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8485987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Funct Genomics. 2008;:565631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1980 Apr 11;8(7):1499-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6253938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 10;277(19):16426-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11877423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Feb 05;9:67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1974 Feb;117(2):477-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4590472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2002 Mar 22;269(1491):591-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11916475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2011;52:205-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21557085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Mar;20(3):320-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Nov 16;338(6109):891-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23161983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2001 Jan;2(1):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11253064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2008 May;33(5):220-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18406148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Jan;6(1):161-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3034574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2012;10(9):e1001388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22984349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Nov 20;515(7527):365-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25409825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2014 Apr;15(4):221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24590227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 1998;16:569-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9597142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20311-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21059933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Mar;42(5):3059-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24371273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1990 Jun;4(6):1023-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2166701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 1997 Dec;29(12):1313-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9570130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2012 Oct;2(10):1243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23050235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 10;293(5532):1089-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11995-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7505451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epigenomics. 2012 Dec;4(6):655-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23244310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2006;301:283-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16570853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Resist Updat. 2003 Jun;6(3):137-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12860461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Jun 28;14:428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23805837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1978 Aug 24;274(5673):775-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">355893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2014 Oct;21(5):459-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24800745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Feb 10;56(3):335-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2644044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Nov 21;346(6212):1007-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25411453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Sep 6;489(7414):57-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2013 Mar-Apr;743-744:12-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23195996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jan 1;16(1):6-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11782440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 26;324(5935):1720-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19443739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Apr 29;3:e02001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24843013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Feb 09;5(2):e9129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20161746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Jul;1819(7):763-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22387149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Mar;5(3):e1000356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19325883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Nov 20;515(7527):355-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25409824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Jul 15;12(14):2108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9679055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 May 21;328(5981):1036-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20378774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2011 May 27;409(1):47-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21295585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1985;19:209-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3909942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2011;52:25-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21557078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(5):R79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18477403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Sep 11;158(6):1431-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25215497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2003;4(2):206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2001 Apr;11(4):540-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11282969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Oct 1;238(2):291-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2011 Sep 23;11(10):726-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21941284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Jul 8;43(1):145-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 Jan 28;138(1-2):105-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8125285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Aug 1;66(15):7578-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16885357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):13994-4001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15292512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci Suppl. 1995;19:37-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8655645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Mar 5;140(5):744-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20211142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Mar 13;156(6):1286-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24630728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1987 Jul 20;196(2):261-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3656447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 May 24;258(5):800-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8637011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 15;27(2):517-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jan 24;112(2):181-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12553907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Nov 19;462(7271):315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19829295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2011 Mar;17(3):330-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21386836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1987 Jun 19;49(6):741-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3034433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Apr 18;496(7445):311-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23598338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Aug;12(8):1190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D670-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Mar 30;291(5513):2606-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Jun;23(6):988-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23590861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Dec 22;10:442</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2008 Jul;92(1):33-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18485662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Dec 4;238(4832):1386-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2825349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Jan 26;271(4):2040-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8567657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Genomics. 2011 Sep;4(3):167-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21867968</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001409 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001409 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26507798
   |texte=   Methylated Cytosines Mutate to Transcription Factor Binding Sites that Drive Tetrapod Evolution.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26507798" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021