Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sequence-dependent structural changes in a self-assembling DNA oligonucleotide.

Identifieur interne : 001364 ( PubMed/Curation ); précédent : 001363; suivant : 001365

Sequence-dependent structural changes in a self-assembling DNA oligonucleotide.

Auteurs : Maithili Saoji [États-Unis] ; Paul J. Paukstelis [États-Unis]

Source :

RBID : pubmed:26627654

Descripteurs français

English descriptors

Abstract

DNA has proved to be a remarkable molecule for the construction of sophisticated two-dimensional and three-dimensional architectures because of its programmability and structural predictability provided by complementary Watson-Crick base pairing. DNA oligonucleotides can, however, exhibit a great deal of local structural diversity. DNA conformation is strongly linked to both environmental conditions and the nucleobase identities inherent in the oligonucleotide sequence, but the exact relationship between sequence and local structure is not completely understood. This study examines how a single-nucleotide addition to a class of self-assembling DNA 13-mers leads to a significantly different overall structure under identical crystallization conditions. The DNA 13-mers self-assemble in the presence of Mg(2+) through a combination of Watson-Crick and noncanonical base-pairing interactions. The crystal structures described here show that all of the predicted Watson-Crick base pairs are present, with the major difference being a significant rearrangement of noncanonical base pairs. This includes the formation of a sheared A-G base pair, a junction of strands formed from base-triple interactions, and tertiary interactions that generate structural features similar to tandem sheared G-A base pairs. The adoption of this alternate noncanonical structure is dependent in part on the sequence in the Watson-Crick duplex region. These results provide important new insights into the sequence-structure relationship of short DNA oligonucleotides and demonstrate a unique interplay between Watson-Crick and noncanonical base pairs that is responsible for crystallization fate.

DOI: 10.1107/S1399004715019598
PubMed: 26627654

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26627654

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sequence-dependent structural changes in a self-assembling DNA oligonucleotide.</title>
<author>
<name sortKey="Saoji, Maithili" sort="Saoji, Maithili" uniqKey="Saoji M" first="Maithili" last="Saoji">Maithili Saoji</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Paukstelis, Paul J" sort="Paukstelis, Paul J" uniqKey="Paukstelis P" first="Paul J" last="Paukstelis">Paul J. Paukstelis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26627654</idno>
<idno type="pmid">26627654</idno>
<idno type="doi">10.1107/S1399004715019598</idno>
<idno type="wicri:Area/PubMed/Corpus">001364</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001364</idno>
<idno type="wicri:Area/PubMed/Curation">001364</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001364</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sequence-dependent structural changes in a self-assembling DNA oligonucleotide.</title>
<author>
<name sortKey="Saoji, Maithili" sort="Saoji, Maithili" uniqKey="Saoji M" first="Maithili" last="Saoji">Maithili Saoji</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Paukstelis, Paul J" sort="Paukstelis, Paul J" uniqKey="Paukstelis P" first="Paul J" last="Paukstelis">Paul J. Paukstelis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta crystallographica. Section D, Biological crystallography</title>
<idno type="eISSN">1399-0047</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Pairing</term>
<term>Base Sequence</term>
<term>Cations, Divalent</term>
<term>Crystallography, X-Ray</term>
<term>DNA (chemistry)</term>
<term>Hydrogen Bonding</term>
<term>Magnesium (chemistry)</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Oligonucleotides (chemistry)</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ()</term>
<term>Appariement de bases</term>
<term>Cations divalents</term>
<term>Conformation d'acide nucléique</term>
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>Liaison hydrogène</term>
<term>Magnésium ()</term>
<term>Modèles moléculaires</term>
<term>Oligonucléotides ()</term>
<term>Séquence nucléotidique</term>
<term>Thermodynamique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA</term>
<term>Magnesium</term>
<term>Oligonucleotides</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cations, Divalent</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Pairing</term>
<term>Base Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Hydrogen Bonding</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN</term>
<term>Appariement de bases</term>
<term>Cations divalents</term>
<term>Conformation d'acide nucléique</term>
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>Liaison hydrogène</term>
<term>Magnésium</term>
<term>Modèles moléculaires</term>
<term>Oligonucléotides</term>
<term>Séquence nucléotidique</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">DNA has proved to be a remarkable molecule for the construction of sophisticated two-dimensional and three-dimensional architectures because of its programmability and structural predictability provided by complementary Watson-Crick base pairing. DNA oligonucleotides can, however, exhibit a great deal of local structural diversity. DNA conformation is strongly linked to both environmental conditions and the nucleobase identities inherent in the oligonucleotide sequence, but the exact relationship between sequence and local structure is not completely understood. This study examines how a single-nucleotide addition to a class of self-assembling DNA 13-mers leads to a significantly different overall structure under identical crystallization conditions. The DNA 13-mers self-assemble in the presence of Mg(2+) through a combination of Watson-Crick and noncanonical base-pairing interactions. The crystal structures described here show that all of the predicted Watson-Crick base pairs are present, with the major difference being a significant rearrangement of noncanonical base pairs. This includes the formation of a sheared A-G base pair, a junction of strands formed from base-triple interactions, and tertiary interactions that generate structural features similar to tandem sheared G-A base pairs. The adoption of this alternate noncanonical structure is dependent in part on the sequence in the Watson-Crick duplex region. These results provide important new insights into the sequence-structure relationship of short DNA oligonucleotides and demonstrate a unique interplay between Watson-Crick and noncanonical base pairs that is responsible for crystallization fate.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26627654</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1399-0047</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>71</Volume>
<Issue>Pt 12</Issue>
<PubDate>
<Year>2015</Year>
<Month>Dec</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Acta crystallographica. Section D, Biological crystallography</Title>
<ISOAbbreviation>Acta Crystallogr. D Biol. Crystallogr.</ISOAbbreviation>
</Journal>
<ArticleTitle>Sequence-dependent structural changes in a self-assembling DNA oligonucleotide.</ArticleTitle>
<Pagination>
<MedlinePgn>2471-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1107/S1399004715019598</ELocationID>
<Abstract>
<AbstractText>DNA has proved to be a remarkable molecule for the construction of sophisticated two-dimensional and three-dimensional architectures because of its programmability and structural predictability provided by complementary Watson-Crick base pairing. DNA oligonucleotides can, however, exhibit a great deal of local structural diversity. DNA conformation is strongly linked to both environmental conditions and the nucleobase identities inherent in the oligonucleotide sequence, but the exact relationship between sequence and local structure is not completely understood. This study examines how a single-nucleotide addition to a class of self-assembling DNA 13-mers leads to a significantly different overall structure under identical crystallization conditions. The DNA 13-mers self-assemble in the presence of Mg(2+) through a combination of Watson-Crick and noncanonical base-pairing interactions. The crystal structures described here show that all of the predicted Watson-Crick base pairs are present, with the major difference being a significant rearrangement of noncanonical base pairs. This includes the formation of a sheared A-G base pair, a junction of strands formed from base-triple interactions, and tertiary interactions that generate structural features similar to tandem sheared G-A base pairs. The adoption of this alternate noncanonical structure is dependent in part on the sequence in the Watson-Crick duplex region. These results provide important new insights into the sequence-structure relationship of short DNA oligonucleotides and demonstrate a unique interplay between Watson-Crick and noncanonical base pairs that is responsible for crystallization fate.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saoji</LastName>
<ForeName>Maithili</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paukstelis</LastName>
<ForeName>Paul J</ForeName>
<Initials>PJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P41 GM103403</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM103403</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>11</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Acta Crystallogr D Biol Crystallogr</MedlineTA>
<NlmUniqueID>9305878</NlmUniqueID>
<ISSNLinking>0907-4449</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002413">Cations, Divalent</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>I38ZP9992A</RegistryNumber>
<NameOfSubstance UI="D008274">Magnesium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020029" MajorTopicYN="N">Base Pairing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002413" MajorTopicYN="N">Cations, Divalent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006860" MajorTopicYN="N">Hydrogen Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008274" MajorTopicYN="N">Magnesium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009841" MajorTopicYN="N">Oligonucleotides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DNA structure</Keyword>
<Keyword MajorTopicYN="N">base-triple interactions</Keyword>
<Keyword MajorTopicYN="N">self-assembly</Keyword>
<Keyword MajorTopicYN="N">sequence–structure relationship</Keyword>
<Keyword MajorTopicYN="N">sheared G–A base pair</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>09</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26627654</ArticleId>
<ArticleId IdType="pii">S1399004715019598</ArticleId>
<ArticleId IdType="doi">10.1107/S1399004715019598</ArticleId>
<ArticleId IdType="pmc">PMC4667286</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biomol Struct Dyn. 1986 Oct;4(2):173-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3271438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2015 Nov;103(11):618-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26015367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Dec 9;310(5754):1661-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23793146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Oct 23;238(4826):498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3310237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 16;440(7082):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16541064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Mar 23;38(12):3468-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10090733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 May 15;31(10):2461-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2004 Aug;11(8):1119-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15324813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Dec 14;342(6251):825-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2601741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1989 May 20;207(2):455-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2754734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Jul 30;30(30):7566-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1854755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(7):1213-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18600227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Feb 20;347(6224):1260901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25700524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22505256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1981 Feb 5;289(5797):466-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7464915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Dec 2;244(3):259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7966337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2003 Jul;4(7):566-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12838348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47411-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15326170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Aug 6;394(6693):539-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(19):5402-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17012276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1983 Jul;80(14):4263-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6576336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Nov 5;228(1):138-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1447778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1981 Jul 15;149(4):761-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6273591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 May 7;459(7243):73-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19424153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1984 Jul 3;23(14):3207-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6466638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2010 Jan;67(1):43-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19727556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2014 Jul 28;53(31):8041-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24623616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 May 21;459(7245):414-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Dec 20;228(4):1037-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1474575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Nov;59(Pt 11):1966-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1980 Aug 7;286(5773):567-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7402336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Sep 5;45(35):10563-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16939208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Sep 18;29(37):8845-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2271561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Feb 8;33(5):1053-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8110736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Oct 11;18(19):5617-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2216754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1981 Mar 25;9(6):1271-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6262723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jan 23;421(6921):427-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12540916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Apr;83(8):2402-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3458205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Apr 30;43(8):4309-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25820425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 3;461(7260):74-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19727196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Aug 19;241(3):467-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8064859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUCrJ. 2014 May 30;1(Pt 4):213-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25075342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Nov 30;338(6111):1177-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23197527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1979 Jul 11;6(9):3073-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">40208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Aug 7;325(5941):725-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19661424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):26-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1986374</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001364 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001364 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26627654
   |texte=   Sequence-dependent structural changes in a self-assembling DNA oligonucleotide.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26627654" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021