Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

LAF: Logic Alignment Free and its application to bacterial genomes classification.

Identifieur interne : 001349 ( PubMed/Curation ); précédent : 001348; suivant : 001350

LAF: Logic Alignment Free and its application to bacterial genomes classification.

Auteurs : Emanuel Weitschek [Italie] ; Fabio Cunial [Finlande] ; Giovanni Felici [Italie]

Source :

RBID : pubmed:26664519

Abstract

Alignment-free algorithms can be used to estimate the similarity of biological sequences and hence are often applied to the phylogenetic reconstruction of genomes. Most of these algorithms rely on comparing the frequency of all the distinct substrings of fixed length (k-mers) that occur in the analyzed sequences. In this paper, we present Logic Alignment Free (LAF), a method that combines alignment-free techniques and rule-based classification algorithms in order to assign biological samples to their taxa. This method searches for a minimal subset of k-mers whose relative frequencies are used to build classification models as disjunctive-normal-form logic formulas (if-then rules). We apply LAF successfully to the classification of bacterial genomes to their corresponding taxonomy. In particular, we succeed in obtaining reliable classification at different taxonomic levels by extracting a handful of rules, each one based on the frequency of just few k-mers. State of the art methods to adjust the frequency of k-mers to the character distribution of the underlying genomes have negligible impact on classification performance, suggesting that the signal of each class is strong and that LAF is effective in identifying it.

DOI: 10.1186/s13040-015-0073-1
PubMed: 26664519

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26664519

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">LAF: Logic Alignment Free and its application to bacterial genomes classification.</title>
<author>
<name sortKey="Weitschek, Emanuel" sort="Weitschek, Emanuel" uniqKey="Weitschek E" first="Emanuel" last="Weitschek">Emanuel Weitschek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Engineering, Uninettuno International University, Corso Vittorio Emanuele II, 39, Rome, 00186 Italy ; Institute of Systems Analysis and Computer Science "A. Ruberti", National Research Council, Via dei Taurini 19, Rome, 00185 Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Engineering, Uninettuno International University, Corso Vittorio Emanuele II, 39, Rome, 00186 Italy ; Institute of Systems Analysis and Computer Science "A. Ruberti", National Research Council, Via dei Taurini 19, Rome</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cunial, Fabio" sort="Cunial, Fabio" uniqKey="Cunial F" first="Fabio" last="Cunial">Fabio Cunial</name>
<affiliation wicri:level="4">
<nlm:affiliation>Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, P.O. Box 68 (Gustaf Hällströmin katu 2b), Helsinki, FI-00014 Finland.</nlm:affiliation>
<orgName type="university">Université d'Helsinki</orgName>
<country>Finlande</country>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Felici, Giovanni" sort="Felici, Giovanni" uniqKey="Felici G" first="Giovanni" last="Felici">Giovanni Felici</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Systems Analysis and Computer Science "A. Ruberti", National Research Council, Via dei Taurini 19, Rome, 00185 Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Institute of Systems Analysis and Computer Science "A. Ruberti", National Research Council, Via dei Taurini 19, Rome</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26664519</idno>
<idno type="pmid">26664519</idno>
<idno type="doi">10.1186/s13040-015-0073-1</idno>
<idno type="wicri:Area/PubMed/Corpus">001349</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001349</idno>
<idno type="wicri:Area/PubMed/Curation">001349</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001349</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">LAF: Logic Alignment Free and its application to bacterial genomes classification.</title>
<author>
<name sortKey="Weitschek, Emanuel" sort="Weitschek, Emanuel" uniqKey="Weitschek E" first="Emanuel" last="Weitschek">Emanuel Weitschek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Engineering, Uninettuno International University, Corso Vittorio Emanuele II, 39, Rome, 00186 Italy ; Institute of Systems Analysis and Computer Science "A. Ruberti", National Research Council, Via dei Taurini 19, Rome, 00185 Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Engineering, Uninettuno International University, Corso Vittorio Emanuele II, 39, Rome, 00186 Italy ; Institute of Systems Analysis and Computer Science "A. Ruberti", National Research Council, Via dei Taurini 19, Rome</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cunial, Fabio" sort="Cunial, Fabio" uniqKey="Cunial F" first="Fabio" last="Cunial">Fabio Cunial</name>
<affiliation wicri:level="4">
<nlm:affiliation>Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, P.O. Box 68 (Gustaf Hällströmin katu 2b), Helsinki, FI-00014 Finland.</nlm:affiliation>
<orgName type="university">Université d'Helsinki</orgName>
<country>Finlande</country>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Felici, Giovanni" sort="Felici, Giovanni" uniqKey="Felici G" first="Giovanni" last="Felici">Giovanni Felici</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Systems Analysis and Computer Science "A. Ruberti", National Research Council, Via dei Taurini 19, Rome, 00185 Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Institute of Systems Analysis and Computer Science "A. Ruberti", National Research Council, Via dei Taurini 19, Rome</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BioData mining</title>
<idno type="ISSN">1756-0381</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Alignment-free algorithms can be used to estimate the similarity of biological sequences and hence are often applied to the phylogenetic reconstruction of genomes. Most of these algorithms rely on comparing the frequency of all the distinct substrings of fixed length (k-mers) that occur in the analyzed sequences. In this paper, we present Logic Alignment Free (LAF), a method that combines alignment-free techniques and rule-based classification algorithms in order to assign biological samples to their taxa. This method searches for a minimal subset of k-mers whose relative frequencies are used to build classification models as disjunctive-normal-form logic formulas (if-then rules). We apply LAF successfully to the classification of bacterial genomes to their corresponding taxonomy. In particular, we succeed in obtaining reliable classification at different taxonomic levels by extracting a handful of rules, each one based on the frequency of just few k-mers. State of the art methods to adjust the frequency of k-mers to the character distribution of the underlying genomes have negligible impact on classification performance, suggesting that the signal of each class is strong and that LAF is effective in identifying it. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26664519</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1756-0381</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>BioData mining</Title>
<ISOAbbreviation>BioData Min</ISOAbbreviation>
</Journal>
<ArticleTitle>LAF: Logic Alignment Free and its application to bacterial genomes classification.</ArticleTitle>
<Pagination>
<MedlinePgn>39</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13040-015-0073-1</ELocationID>
<Abstract>
<AbstractText>Alignment-free algorithms can be used to estimate the similarity of biological sequences and hence are often applied to the phylogenetic reconstruction of genomes. Most of these algorithms rely on comparing the frequency of all the distinct substrings of fixed length (k-mers) that occur in the analyzed sequences. In this paper, we present Logic Alignment Free (LAF), a method that combines alignment-free techniques and rule-based classification algorithms in order to assign biological samples to their taxa. This method searches for a minimal subset of k-mers whose relative frequencies are used to build classification models as disjunctive-normal-form logic formulas (if-then rules). We apply LAF successfully to the classification of bacterial genomes to their corresponding taxonomy. In particular, we succeed in obtaining reliable classification at different taxonomic levels by extracting a handful of rules, each one based on the frequency of just few k-mers. State of the art methods to adjust the frequency of k-mers to the character distribution of the underlying genomes have negligible impact on classification performance, suggesting that the signal of each class is strong and that LAF is effective in identifying it. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Weitschek</LastName>
<ForeName>Emanuel</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Engineering, Uninettuno International University, Corso Vittorio Emanuele II, 39, Rome, 00186 Italy ; Institute of Systems Analysis and Computer Science "A. Ruberti", National Research Council, Via dei Taurini 19, Rome, 00185 Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cunial</LastName>
<ForeName>Fabio</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, P.O. Box 68 (Gustaf Hällströmin katu 2b), Helsinki, FI-00014 Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Felici</LastName>
<ForeName>Giovanni</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Institute of Systems Analysis and Computer Science "A. Ruberti", National Research Council, Via dei Taurini 19, Rome, 00185 Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BioData Min</MedlineTA>
<NlmUniqueID>101319161</NlmUniqueID>
<ISSNLinking>1756-0381</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Alignment-free sequence comparison</Keyword>
<Keyword MajorTopicYN="N">Bacterial taxonomy</Keyword>
<Keyword MajorTopicYN="N">Supervised classification</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>11</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26664519</ArticleId>
<ArticleId IdType="doi">10.1186/s13040-015-0073-1</ArticleId>
<ArticleId IdType="pii">73</ArticleId>
<ArticleId IdType="pmc">PMC4673791</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2002 Aug;Chapter 2:Unit 2.3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18792934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Mar 1;19(4):513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12611807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jun 10;9(8):811-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22688413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1977 Apr 7;266(5602):533-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">558523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2009 Jun;93(6):525-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19442633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Oct 26;5:163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jun 1;27(11):2369-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10325427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):145-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Dec 17;9:546</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2012 Mar 02;9:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22385517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1993 Feb;9(1):17-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8435763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Dec 15;28(24):3316-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23047562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1961 Mar;236:864-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13790780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BioData Min. 2014 Apr 11;7(1):4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24721333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2002;3:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11895567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Jan;18(1):100-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Nov 10;10 Suppl 14:S7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19900303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2004 Jan;58(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14743310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Mar 15;27(6):764-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Bioinform Online. 2007 Sep 17;3:211-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19468314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1990;183:63-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2156132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2007 Jan;4(1):63-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1995 Jul;11(7):283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7482779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jul 15;30(14):3059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2013 Feb;20(2):64-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23383994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003;19 Suppl 1:i26-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12855434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Jun;179(12):3899-913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9190805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Algorithms Mol Biol. 2012 Sep 26;7(1):27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23009059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1976 Nov;108(1):1-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1003479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Sep 1;30(17):2471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24845653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Notes. 2007 May 1;7(3):355-364</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18784790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1991 Nov;11(3):635-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1774068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2001 Aug;11(8):1404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9294192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2014 Aug;104(2):79-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25058025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2012 Feb;19(2):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22300323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Nov 10;10 Suppl 14:S9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19900305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BioData Min. 2011 Mar 01;4:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21362183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1970 Mar;48(3):443-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5420325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1999 Nov 1;37(2):264-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10584071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Apr;19(4):554-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jun 1;27(11):1489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21493653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1962 Mar 15;48:449-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13922323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2004;38:771-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15568993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Dec;6(12):1208-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2005 Apr;60(4):538-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2012 Jan-Feb;9(1):79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21383416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12 Suppl 2:S4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21989143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2014 May;15(3):343-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24064230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(10):R108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19814784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1999 Oct;16(10):1391-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10563018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2004 Sep;6(9):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15305919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Biol Chem. 2006 Aug;30(4):292-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16880118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D617-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24203705</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001349 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001349 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26664519
   |texte=   LAF: Logic Alignment Free and its application to bacterial genomes classification.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26664519" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021