Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.

Identifieur interne : 001218 ( PubMed/Curation ); précédent : 001217; suivant : 001219

The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.

Auteurs : Robert J. Bauer [États-Unis] ; Thomas C. Evans [États-Unis] ; Gregory J S. Lohman [États-Unis]

Source :

RBID : pubmed:26954034

Descripteurs français

English descriptors

Abstract

DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site.

DOI: 10.1371/journal.pone.0150802
PubMed: 26954034

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26954034

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.</title>
<author>
<name sortKey="Bauer, Robert J" sort="Bauer, Robert J" uniqKey="Bauer R" first="Robert J" last="Bauer">Robert J. Bauer</name>
<affiliation wicri:level="1">
<nlm:affiliation>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Evans, Thomas C" sort="Evans, Thomas C" uniqKey="Evans T" first="Thomas C" last="Evans">Thomas C. Evans</name>
<affiliation wicri:level="1">
<nlm:affiliation>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lohman, Gregory J S" sort="Lohman, Gregory J S" uniqKey="Lohman G" first="Gregory J S" last="Lohman">Gregory J S. Lohman</name>
<affiliation wicri:level="1">
<nlm:affiliation>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26954034</idno>
<idno type="pmid">26954034</idno>
<idno type="doi">10.1371/journal.pone.0150802</idno>
<idno type="wicri:Area/PubMed/Corpus">001218</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001218</idno>
<idno type="wicri:Area/PubMed/Curation">001218</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001218</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.</title>
<author>
<name sortKey="Bauer, Robert J" sort="Bauer, Robert J" uniqKey="Bauer R" first="Robert J" last="Bauer">Robert J. Bauer</name>
<affiliation wicri:level="1">
<nlm:affiliation>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Evans, Thomas C" sort="Evans, Thomas C" uniqKey="Evans T" first="Thomas C" last="Evans">Thomas C. Evans</name>
<affiliation wicri:level="1">
<nlm:affiliation>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lohman, Gregory J S" sort="Lohman, Gregory J S" uniqKey="Lohman G" first="Gregory J S" last="Lohman">Gregory J S. Lohman</name>
<affiliation wicri:level="1">
<nlm:affiliation>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalysis</term>
<term>DNA (chemistry)</term>
<term>DNA Ligases (chemistry)</term>
<term>DNA Replication</term>
<term>In Vitro Techniques</term>
<term>Kinetics</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ()</term>
<term>Catalyse</term>
<term>Cinétique</term>
<term>DNA ligases ()</term>
<term>Réplication de l'ADN</term>
<term>Techniques in vitro</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA</term>
<term>DNA Ligases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>DNA Replication</term>
<term>In Vitro Techniques</term>
<term>Kinetics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN</term>
<term>Catalyse</term>
<term>Cinétique</term>
<term>DNA ligases</term>
<term>Réplication de l'ADN</term>
<term>Techniques in vitro</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26954034</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.</ArticleTitle>
<Pagination>
<MedlinePgn>e0150802</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0150802</ELocationID>
<Abstract>
<AbstractText>DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bauer</LastName>
<ForeName>Robert J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Evans</LastName>
<ForeName>Thomas C</ForeName>
<Initials>TC</Initials>
<Suffix>Jr</Suffix>
<AffiliationInfo>
<Affiliation>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lohman</LastName>
<ForeName>Gregory J S</ForeName>
<Initials>GJ</Initials>
<AffiliationInfo>
<Affiliation>DNA Enzymes Division, New England Biolabs, Inc., Ipswich, MA, 01938-2723, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>03</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.5.1.-</RegistryNumber>
<NameOfSubstance UI="D011088">DNA Ligases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011088" MajorTopicYN="N">DNA Ligases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="N">DNA Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>12</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26954034</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0150802</ArticleId>
<ArticleId IdType="pii">PONE-D-15-55345</ArticleId>
<ArticleId IdType="pmc">PMC4782999</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2007 Aug;14(8):770-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17618295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 17;287(34):28609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Jan;269(2):650-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11856324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1973 Nov 10;248(21):7502-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4355585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Dec 25;21(25):5934-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8290355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1996 Sep 13;226(2):498-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8806663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1983 Jul 19;22(15):3537-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6351905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jun 26;284(26):17365-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19329793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jun 30;48(25):6022-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19449863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1983 Sep 14;747(1-2):117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6882774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1975 Dec 15;60(2):437-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">173544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jul 1;286(26):23054-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21561855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Feb 1;27(3):788-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9889274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Dec;269(24):5993-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12473094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 May 17;85(4):607-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8653795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Mar 6;51(9):1996-2007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22339170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1967 Jan;57(1):148-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4860192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Jun 1;25(11):2106-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9153309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Oct 20;24(2):279-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17052461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jan 18;277(3):1695-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11687591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Aug 18;43(14):7021-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26130724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014;4:6522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25283467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2003 Nov;270(21):4315-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14622296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2015 Jan 27;54(3):898-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25537480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Feb 11;296(1):43-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1974 Nov 29;186(4166):790-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4377758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12863-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 24;286(25):22642-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21527793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8376-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 23;286(51):44187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22027837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2012 Sep 1;84(5):654-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2014;7:287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24885075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Feb;42(3):1831-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24203707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989;76(2):245-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2753355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1967 May;57(5):1426-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5341238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1982 Mar 11;10(5):1425-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7041091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Jan 15;26(2):525-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9421510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EcoSal Plus. 2008 Sep;3(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26443740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7734-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20385846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Dec 12;34(49):16138-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8519771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Apr 15;286(15):13314-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21335605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Apr 27;26(2):257-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17466627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1968 Sep;61(1):237-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4301588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 29;44(2):e15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26365239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Nov;6(5):1183-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11106756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Aug 1;26(15):3536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Mar;71(3):1931-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9032324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Nov 25;432(7016):473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15565146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 23;279(30):31337-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15084599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Dec;71(12):9679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 29;44(2):e14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26365241</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001218 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001218 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26954034
   |texte=   The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26954034" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021