Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MERS-CoV recombination: implications about the reservoir and potential for adaptation.

Identifieur interne : 000F31 ( PubMed/Curation ); précédent : 000F30; suivant : 000F32

MERS-CoV recombination: implications about the reservoir and potential for adaptation.

Auteurs : Gytis Dudas [Royaume-Uni] ; Andrew Rambaut [États-Unis]

Source :

RBID : pubmed:27774293

Abstract

Recombination is a process that unlinks neighboring loci allowing for independent evolutionary trajectories within genomes of many organisms. If not properly accounted for, recombination can compromise many evolutionary analyses. In addition, when dealing with organisms that are not obligately sexually reproducing, recombination gives insight into the rate at which distinct genetic lineages come into contact. Since June 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) has caused 1,106 laboratory-confirmed infections, with 421 MERS-CoV-associated deaths as of 16 April 2015. Although bats are considered as the likely ultimate source of zoonotic betacoronaviruses, dromedary camels have been consistently implicated as the source of current human infections in the Middle East. In this article, we use phylogenetic methods and simulations to show that MERS-CoV genome has likely undergone numerous recombinations recently. Recombination in MERS-CoV implies frequent co-infection with distinct lineages of MERS-CoV, probably in camels given the current understanding of MERS-CoV epidemiology.

DOI: 10.1093/ve/vev023
PubMed: 27774293

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27774293

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">MERS-CoV recombination: implications about the reservoir and potential for adaptation.</title>
<author>
<name sortKey="Dudas, Gytis" sort="Dudas, Gytis" uniqKey="Dudas G" first="Gytis" last="Dudas">Gytis Dudas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Evolutionary Biology, University of Edinburgh, Edinburgh</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rambaut, Andrew" sort="Rambaut, Andrew" uniqKey="Rambaut A" first="Andrew" last="Rambaut">Andrew Rambaut</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,; Centre for Immunology, Infection and Evolution at the University of Edinburgh, Edinburgh, UK and; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,; Centre for Immunology, Infection and Evolution at the University of Edinburgh, Edinburgh, UK and; Fogarty International Center, National Institutes of Health, Bethesda, MD</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27774293</idno>
<idno type="pmid">27774293</idno>
<idno type="doi">10.1093/ve/vev023</idno>
<idno type="wicri:Area/PubMed/Corpus">000F31</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000F31</idno>
<idno type="wicri:Area/PubMed/Curation">000F31</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000F31</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">MERS-CoV recombination: implications about the reservoir and potential for adaptation.</title>
<author>
<name sortKey="Dudas, Gytis" sort="Dudas, Gytis" uniqKey="Dudas G" first="Gytis" last="Dudas">Gytis Dudas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Evolutionary Biology, University of Edinburgh, Edinburgh</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rambaut, Andrew" sort="Rambaut, Andrew" uniqKey="Rambaut A" first="Andrew" last="Rambaut">Andrew Rambaut</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,; Centre for Immunology, Infection and Evolution at the University of Edinburgh, Edinburgh, UK and; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,; Centre for Immunology, Infection and Evolution at the University of Edinburgh, Edinburgh, UK and; Fogarty International Center, National Institutes of Health, Bethesda, MD</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Virus evolution</title>
<idno type="ISSN">2057-1577</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recombination is a process that unlinks neighboring loci allowing for independent evolutionary trajectories within genomes of many organisms. If not properly accounted for, recombination can compromise many evolutionary analyses. In addition, when dealing with organisms that are not obligately sexually reproducing, recombination gives insight into the rate at which distinct genetic lineages come into contact. Since June 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) has caused 1,106 laboratory-confirmed infections, with 421 MERS-CoV-associated deaths as of 16 April 2015. Although bats are considered as the likely ultimate source of zoonotic betacoronaviruses, dromedary camels have been consistently implicated as the source of current human infections in the Middle East. In this article, we use phylogenetic methods and simulations to show that MERS-CoV genome has likely undergone numerous recombinations recently. Recombination in MERS-CoV implies frequent co-infection with distinct lineages of MERS-CoV, probably in camels given the current understanding of MERS-CoV epidemiology.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27774293</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2057-1577</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Virus evolution</Title>
<ISOAbbreviation>Virus Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>MERS-CoV recombination: implications about the reservoir and potential for adaptation.</ArticleTitle>
<Pagination>
<MedlinePgn>vev023</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Recombination is a process that unlinks neighboring loci allowing for independent evolutionary trajectories within genomes of many organisms. If not properly accounted for, recombination can compromise many evolutionary analyses. In addition, when dealing with organisms that are not obligately sexually reproducing, recombination gives insight into the rate at which distinct genetic lineages come into contact. Since June 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) has caused 1,106 laboratory-confirmed infections, with 421 MERS-CoV-associated deaths as of 16 April 2015. Although bats are considered as the likely ultimate source of zoonotic betacoronaviruses, dromedary camels have been consistently implicated as the source of current human infections in the Middle East. In this article, we use phylogenetic methods and simulations to show that MERS-CoV genome has likely undergone numerous recombinations recently. Recombination in MERS-CoV implies frequent co-infection with distinct lineages of MERS-CoV, probably in camels given the current understanding of MERS-CoV epidemiology.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dudas</LastName>
<ForeName>Gytis</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rambaut</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK,; Centre for Immunology, Infection and Evolution at the University of Edinburgh, Edinburgh, UK and; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>01</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Virus Evol</MedlineTA>
<NlmUniqueID>101664675</NlmUniqueID>
<ISSNLinking>2057-1577</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">MERS</Keyword>
<Keyword MajorTopicYN="N">MERS-CoV</Keyword>
<Keyword MajorTopicYN="N">co-infection</Keyword>
<Keyword MajorTopicYN="N">coronavirus</Keyword>
<Keyword MajorTopicYN="N">homoplasy</Keyword>
<Keyword MajorTopicYN="N">recombination</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27774293</ArticleId>
<ArticleId IdType="doi">10.1093/ve/vev023</ArticleId>
<ArticleId IdType="pii">vev023</ArticleId>
<ArticleId IdType="pmc">PMC4989901</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2009 Apr;26(4):801-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2013 Jun 27;368(26):2487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23718156</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2004 Jul 8;430(6996):209-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15241415</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1995 Mar 9;374(6518):124-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7877682</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1992 Dec;66(12):6858-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1331498</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Genet. 2013 Oct;9(10):e1003905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Feb;82(4):1819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18057240</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Evol. 1995 Mar;40(3):249-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7723052</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 1994 Sep;11(5):725-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7968486</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2009 Jun 25;459(7250):1122-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516283</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2013 Sep;13(9):745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23782859</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2013 Oct;13(10):859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23933067</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Genet. 2002;36:75-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12429687</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13757-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717435</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1998 May;72(5):4508-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9557750</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2001 Nov;18(11):2132-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11606711</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2013 Dec 14;382(9909):1993-2002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24055451</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1985 Nov;56(2):449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2997467</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2014 Feb 18;5(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24549846</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 Aug;20(8):1319-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25075637</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Curr. 2009 Sep 02;1:RRN1031</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20029613</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 Jun;20(6):1049-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24856660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Evol. 1985;22(2):160-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3934395</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2014 Sep 12;345(6202):1369-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25214632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2014 Jan;14(1):50-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24239323</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1964 Jan;49(1):49-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17248194</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1990 Nov;126(3):505-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1979037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1251-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17151252</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2015 May;15(5):559-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25863564</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2003 Jul;164(3):1229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12871927</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2003 Oct;84(Pt 10):2691-2703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13679603</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 1999 Jun;16(6):741-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10368953</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1986 Jan;112(1):135-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3510942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antimicrob Agents Chemother. 1993 Oct;37(10):2231-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7504909</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2006 May;4(5):e88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16683862</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2010 Mar;84(6):2808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20071579</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Curr. 2009 Aug 18;1:RRN1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20025195</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Oct;88(19):11297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25031349</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2013 Mar;30(3):713-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23180580</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2013 Dec;19(12):2034-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24274664</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 Aug;20(8):1370-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25062254</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2012 Aug;29(8):1969-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22367748</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Evol Biol. 2014 Jan 24;14:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24456010</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1995 Nov 10;213(2):569-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7491781</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2006 Oct;23(10):1891-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818476</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2002 Mar;160(3):1231-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11901136</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2007 Jun;176(2):1035-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17409078</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2013 Sep;13(9):752-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23891402</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Infect Dis. 2015 Feb 1;60(3):369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25323704</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1986 Mar;57(3):729-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3005623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 1986 Nov 7;47(3):433-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3021340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Theor Appl Genet. 1968 Jun;38(6):226-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24442307</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Evol. 1994 Sep;39(3):306-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7932792</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2014 Jan 15;209(2):243-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24218504</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1987 Feb;156(2):342-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3027983</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 Dec;20(12):1999-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25418529</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2000 Oct;156(2):879-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11014833</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1993 Apr;67(4):1761-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8445709</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2006 Apr;172(4):2665-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489234</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5653-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7685907</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genet Res. 2003 Apr;81(2):115-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12872913</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Jul;74(13):6015-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10846083</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 Dec;20(12):2093-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25425139</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2005 Mar 1;21(5):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509596</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1988 May;62(5):1810-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2833625</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2001 Feb 15;183(4):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11170976</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 1998 May;15(5):590-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9580989</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2010 May 03;5(5):e10434</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20454662</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2012 Sep;29(9):2157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22403239</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Evol. 2002 Mar;54(3):396-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11847565</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011 Feb 28;6(2):e17212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21386964</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2014 May 07;15:133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24885610</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F31 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000F31 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:27774293
   |texte=   MERS-CoV recombination: implications about the reservoir and potential for adaptation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:27774293" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021