Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome.

Identifieur interne : 000F13 ( PubMed/Curation ); précédent : 000F12; suivant : 000F14

CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome.

Auteurs : Christopher M. Coleman [États-Unis] ; Jeanne M. Sisk [États-Unis] ; Gabor Halasz [États-Unis] ; Jixin Zhong [États-Unis] ; Sarah E. Beck [États-Unis] ; Krystal L. Matthews [États-Unis] ; Thiagarajan Venkataraman [États-Unis] ; Sanjay Rajagopalan [États-Unis] ; Christos A. Kyratsous [États-Unis] ; Matthew B. Frieman [États-Unis]

Source :

RBID : pubmed:27795435

Descripteurs français

English descriptors

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) is an important emerging pathogen that was first described in 2012. While the cell surface receptor for MERS-CoV has been identified as dipeptidyl peptidase 4 (DPP4), the mouse DPP4 homologue does not allow virus entry into cells. Therefore, development of mouse models of MERS-CoV has been hampered by the fact that MERS-CoV does not replicate in commonly available mouse strains. We have previously described a mouse model in which mDPP4 was replaced with hDPP4 such that hDPP4 is expressed under the endogenous mDPP4 promoter. In this study, we used this mouse model to analyze the host response to MERS-CoV infection using immunological assays and transcriptome analysis. Depletion of CD4+ T cells, CD8+ T cells, or macrophages has no effect on MERS-CoV replication in the lungs of infected mice. However, we found that depletion of CD8+ T cells protects and depletion of macrophages exacerbates MERS-CoV-induced pathology and clinical symptoms of disease. Overall, we demonstrate an important role for the inflammatory response in regulating MERS-CoV pathogenesis in vivo IMPORTANCE: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic respiratory virus that emerged from zoonotic sources in 2012. Human infections are still occurring throughout Saudi Arabia at a 38% case fatality rate, with the potential for worldwide spread via air travel. In this work, we identify the host response to the virus and identify inflammatory pathways and cell populations that are critical for protection from severe lung disease. By understanding the immune response to MERS-CoV we can develop targeted therapies to inhibit pathogenesis in the future.

DOI: 10.1128/JVI.01825-16
PubMed: 27795435

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27795435

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome.</title>
<author>
<name sortKey="Coleman, Christopher M" sort="Coleman, Christopher M" uniqKey="Coleman C" first="Christopher M" last="Coleman">Christopher M. Coleman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sisk, Jeanne M" sort="Sisk, Jeanne M" uniqKey="Sisk J" first="Jeanne M" last="Sisk">Jeanne M. Sisk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Halasz, Gabor" sort="Halasz, Gabor" uniqKey="Halasz G" first="Gabor" last="Halasz">Gabor Halasz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Regeneron Pharmaceuticals, Tarrytown, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Regeneron Pharmaceuticals, Tarrytown, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhong, Jixin" sort="Zhong, Jixin" uniqKey="Zhong J" first="Jixin" last="Zhong">Jixin Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Beck, Sarah E" sort="Beck, Sarah E" uniqKey="Beck S" first="Sarah E" last="Beck">Sarah E. Beck</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Matthews, Krystal L" sort="Matthews, Krystal L" uniqKey="Matthews K" first="Krystal L" last="Matthews">Krystal L. Matthews</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Venkataraman, Thiagarajan" sort="Venkataraman, Thiagarajan" uniqKey="Venkataraman T" first="Thiagarajan" last="Venkataraman">Thiagarajan Venkataraman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rajagopalan, Sanjay" sort="Rajagopalan, Sanjay" uniqKey="Rajagopalan S" first="Sanjay" last="Rajagopalan">Sanjay Rajagopalan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kyratsous, Christos A" sort="Kyratsous, Christos A" uniqKey="Kyratsous C" first="Christos A" last="Kyratsous">Christos A. Kyratsous</name>
<affiliation wicri:level="1">
<nlm:affiliation>Regeneron Pharmaceuticals, Tarrytown, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Regeneron Pharmaceuticals, Tarrytown, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Frieman, Matthew B" sort="Frieman, Matthew B" uniqKey="Frieman M" first="Matthew B" last="Frieman">Matthew B. Frieman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA mfrieman@som.umaryland.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27795435</idno>
<idno type="pmid">27795435</idno>
<idno type="doi">10.1128/JVI.01825-16</idno>
<idno type="wicri:Area/PubMed/Corpus">000F13</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000F13</idno>
<idno type="wicri:Area/PubMed/Curation">000F13</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000F13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome.</title>
<author>
<name sortKey="Coleman, Christopher M" sort="Coleman, Christopher M" uniqKey="Coleman C" first="Christopher M" last="Coleman">Christopher M. Coleman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sisk, Jeanne M" sort="Sisk, Jeanne M" uniqKey="Sisk J" first="Jeanne M" last="Sisk">Jeanne M. Sisk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Halasz, Gabor" sort="Halasz, Gabor" uniqKey="Halasz G" first="Gabor" last="Halasz">Gabor Halasz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Regeneron Pharmaceuticals, Tarrytown, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Regeneron Pharmaceuticals, Tarrytown, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhong, Jixin" sort="Zhong, Jixin" uniqKey="Zhong J" first="Jixin" last="Zhong">Jixin Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Beck, Sarah E" sort="Beck, Sarah E" uniqKey="Beck S" first="Sarah E" last="Beck">Sarah E. Beck</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Matthews, Krystal L" sort="Matthews, Krystal L" uniqKey="Matthews K" first="Krystal L" last="Matthews">Krystal L. Matthews</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Venkataraman, Thiagarajan" sort="Venkataraman, Thiagarajan" uniqKey="Venkataraman T" first="Thiagarajan" last="Venkataraman">Thiagarajan Venkataraman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rajagopalan, Sanjay" sort="Rajagopalan, Sanjay" uniqKey="Rajagopalan S" first="Sanjay" last="Rajagopalan">Sanjay Rajagopalan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kyratsous, Christos A" sort="Kyratsous, Christos A" uniqKey="Kyratsous C" first="Christos A" last="Kyratsous">Christos A. Kyratsous</name>
<affiliation wicri:level="1">
<nlm:affiliation>Regeneron Pharmaceuticals, Tarrytown, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Regeneron Pharmaceuticals, Tarrytown, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Frieman, Matthew B" sort="Frieman, Matthew B" uniqKey="Frieman M" first="Matthew B" last="Frieman">Matthew B. Frieman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA mfrieman@som.umaryland.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>CD4-Positive T-Lymphocytes (immunology)</term>
<term>CD4-Positive T-Lymphocytes (virology)</term>
<term>CD8-Positive T-Lymphocytes (immunology)</term>
<term>CD8-Positive T-Lymphocytes (virology)</term>
<term>Coronavirus Infections (genetics)</term>
<term>Coronavirus Infections (immunology)</term>
<term>Coronavirus Infections (pathology)</term>
<term>Coronavirus Infections (virology)</term>
<term>Dipeptidyl Peptidase 4 (genetics)</term>
<term>Dipeptidyl Peptidase 4 (immunology)</term>
<term>Disease Models, Animal</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Lung (immunology)</term>
<term>Lung (virology)</term>
<term>Lymphocyte Depletion</term>
<term>Macrophages (immunology)</term>
<term>Macrophages (virology)</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Transgenic</term>
<term>Middle East Respiratory Syndrome Coronavirus (genetics)</term>
<term>Middle East Respiratory Syndrome Coronavirus (immunology)</term>
<term>Middle East Respiratory Syndrome Coronavirus (pathogenicity)</term>
<term>Promoter Regions, Genetic</term>
<term>Receptors, Virus (genetics)</term>
<term>Receptors, Virus (immunology)</term>
<term>Transcriptome</term>
<term>Transgenes</term>
<term>Virus Internalization</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Animaux</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (génétique)</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (immunologie)</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (pathogénicité)</term>
<term>Dipeptidyl peptidase 4 (génétique)</term>
<term>Dipeptidyl peptidase 4 (immunologie)</term>
<term>Déplétion lymphocytaire</term>
<term>Humains</term>
<term>Infections à coronavirus (anatomopathologie)</term>
<term>Infections à coronavirus (génétique)</term>
<term>Infections à coronavirus (immunologie)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Interactions hôte-pathogène</term>
<term>Lymphocytes T CD4+ (immunologie)</term>
<term>Lymphocytes T CD4+ (virologie)</term>
<term>Lymphocytes T CD8+ (immunologie)</term>
<term>Lymphocytes T CD8+ (virologie)</term>
<term>Macrophages (immunologie)</term>
<term>Macrophages (virologie)</term>
<term>Modèles animaux de maladie humaine</term>
<term>Poumon (immunologie)</term>
<term>Poumon (virologie)</term>
<term>Pénétration virale</term>
<term>Récepteurs viraux (génétique)</term>
<term>Récepteurs viraux (immunologie)</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes</term>
<term>Réplication virale</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris transgéniques</term>
<term>Transcriptome</term>
<term>Transgènes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Dipeptidyl Peptidase 4</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
<term>Dipeptidyl peptidase 4</term>
<term>Infections à coronavirus</term>
<term>Récepteurs viraux</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
<term>Dipeptidyl peptidase 4</term>
<term>Infections à coronavirus</term>
<term>Lymphocytes T CD4+</term>
<term>Lymphocytes T CD8+</term>
<term>Macrophages</term>
<term>Poumon</term>
<term>Récepteurs viraux</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>CD4-Positive T-Lymphocytes</term>
<term>CD8-Positive T-Lymphocytes</term>
<term>Coronavirus Infections</term>
<term>Dipeptidyl Peptidase 4</term>
<term>Lung</term>
<term>Macrophages</term>
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Lymphocytes T CD4+</term>
<term>Lymphocytes T CD8+</term>
<term>Macrophages</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>CD4-Positive T-Lymphocytes</term>
<term>CD8-Positive T-Lymphocytes</term>
<term>Coronavirus Infections</term>
<term>Lung</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Disease Models, Animal</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Lymphocyte Depletion</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Transgenic</term>
<term>Promoter Regions, Genetic</term>
<term>Transcriptome</term>
<term>Transgenes</term>
<term>Virus Internalization</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Animaux</term>
<term>Déplétion lymphocytaire</term>
<term>Humains</term>
<term>Interactions hôte-pathogène</term>
<term>Modèles animaux de maladie humaine</term>
<term>Pénétration virale</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes</term>
<term>Réplication virale</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris transgéniques</term>
<term>Transcriptome</term>
<term>Transgènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Middle East respiratory syndrome coronavirus (MERS-CoV) is an important emerging pathogen that was first described in 2012. While the cell surface receptor for MERS-CoV has been identified as dipeptidyl peptidase 4 (DPP4), the mouse DPP4 homologue does not allow virus entry into cells. Therefore, development of mouse models of MERS-CoV has been hampered by the fact that MERS-CoV does not replicate in commonly available mouse strains. We have previously described a mouse model in which mDPP4 was replaced with hDPP4 such that hDPP4 is expressed under the endogenous mDPP4 promoter. In this study, we used this mouse model to analyze the host response to MERS-CoV infection using immunological assays and transcriptome analysis. Depletion of CD4
<sup>+</sup>
T cells, CD8
<sup>+</sup>
T cells, or macrophages has no effect on MERS-CoV replication in the lungs of infected mice. However, we found that depletion of CD8
<sup>+</sup>
T cells protects and depletion of macrophages exacerbates MERS-CoV-induced pathology and clinical symptoms of disease. Overall, we demonstrate an important role for the inflammatory response in regulating MERS-CoV pathogenesis in vivo IMPORTANCE: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic respiratory virus that emerged from zoonotic sources in 2012. Human infections are still occurring throughout Saudi Arabia at a 38% case fatality rate, with the potential for worldwide spread via air travel. In this work, we identify the host response to the virus and identify inflammatory pathways and cell populations that are critical for protection from severe lung disease. By understanding the immune response to MERS-CoV we can develop targeted therapies to inhibit pathogenesis in the future.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27795435</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>91</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01825-16</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01825-16</ELocationID>
<Abstract>
<AbstractText>Middle East respiratory syndrome coronavirus (MERS-CoV) is an important emerging pathogen that was first described in 2012. While the cell surface receptor for MERS-CoV has been identified as dipeptidyl peptidase 4 (DPP4), the mouse DPP4 homologue does not allow virus entry into cells. Therefore, development of mouse models of MERS-CoV has been hampered by the fact that MERS-CoV does not replicate in commonly available mouse strains. We have previously described a mouse model in which mDPP4 was replaced with hDPP4 such that hDPP4 is expressed under the endogenous mDPP4 promoter. In this study, we used this mouse model to analyze the host response to MERS-CoV infection using immunological assays and transcriptome analysis. Depletion of CD4
<sup>+</sup>
T cells, CD8
<sup>+</sup>
T cells, or macrophages has no effect on MERS-CoV replication in the lungs of infected mice. However, we found that depletion of CD8
<sup>+</sup>
T cells protects and depletion of macrophages exacerbates MERS-CoV-induced pathology and clinical symptoms of disease. Overall, we demonstrate an important role for the inflammatory response in regulating MERS-CoV pathogenesis in vivo IMPORTANCE: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic respiratory virus that emerged from zoonotic sources in 2012. Human infections are still occurring throughout Saudi Arabia at a 38% case fatality rate, with the potential for worldwide spread via air travel. In this work, we identify the host response to the virus and identify inflammatory pathways and cell populations that are critical for protection from severe lung disease. By understanding the immune response to MERS-CoV we can develop targeted therapies to inhibit pathogenesis in the future.</AbstractText>
<CopyrightInformation>Copyright © 2016 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Coleman</LastName>
<ForeName>Christopher M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sisk</LastName>
<ForeName>Jeanne M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Halasz</LastName>
<ForeName>Gabor</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Regeneron Pharmaceuticals, Tarrytown, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>Jixin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beck</LastName>
<ForeName>Sarah E</ForeName>
<Initials>SE</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matthews</LastName>
<ForeName>Krystal L</ForeName>
<Initials>KL</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Venkataraman</LastName>
<ForeName>Thiagarajan</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rajagopalan</LastName>
<ForeName>Sanjay</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kyratsous</LastName>
<ForeName>Christos A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Regeneron Pharmaceuticals, Tarrytown, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frieman</LastName>
<ForeName>Matthew B</ForeName>
<Initials>MB</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA mfrieman@som.umaryland.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>F32 AI118303</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI095569</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL127422</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K01 OD021323</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI095190</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.14.5</RegistryNumber>
<NameOfSubstance UI="C042807">DPP4 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.14.5</RegistryNumber>
<NameOfSubstance UI="D018819">Dipeptidyl Peptidase 4</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.14.5</RegistryNumber>
<NameOfSubstance UI="C545245">Dpp4 protein, mouse</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015496" MajorTopicYN="N">CD4-Positive T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018414" MajorTopicYN="N">CD8-Positive T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018819" MajorTopicYN="N">Dipeptidyl Peptidase 4</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008212" MajorTopicYN="N">Lymphocyte Depletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008822" MajorTopicYN="N">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="N">Transgenes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">DPP4</Keyword>
<Keyword MajorTopicYN="Y">MERS</Keyword>
<Keyword MajorTopicYN="Y">MERS-CoV</Keyword>
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">immune response</Keyword>
<Keyword MajorTopicYN="Y">mouse model</Keyword>
<Keyword MajorTopicYN="Y">pathogenesis</Keyword>
<Keyword MajorTopicYN="Y">viral pathogenesis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27795435</ArticleId>
<ArticleId IdType="pii">JVI.01825-16</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01825-16</ArticleId>
<ArticleId IdType="pmc">PMC5165197</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Scand J Immunol. 2001 Sep;54(3):249-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11555388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2016 Mar 1;213(5):712-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26486634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Sep 29;5(9):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20927376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367 (19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2015 Nov;485:422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 1994 Sep 14;174(1-2):83-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2013 Jul 31;393(1-2):38-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23597928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2016 Mar;186(3):652-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26857507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2014 May 1;209(9):1331-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24065148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(10):R106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20979621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2014 Jan 15;209(2):236-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24218506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Apr;89(8):4696-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25653445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2016 Mar 15;213(6):904-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26203058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 May;88(9):5195-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24574399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16598-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24062443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Aug;88(16):9220-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24899185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Atherosclerosis. 2013 Feb;226(2):305-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23083681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Health. 2015 Jul 21;37:e2015033</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26212508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Feb;95(Pt 2):408-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Oct;5(10):e1000636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19851468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Apr 18;368(16):1560-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23550601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2016 Feb;97(2):344-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26602089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2008 Oct;9(10):1091-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18800157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2015 Nov 30;6:609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26648938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8738-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26124093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Apr;89(7):3659-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25589660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Aug 21;10(8):e1004250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25144235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Oct 07;90(1):57-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26446606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Microbiol. 2015 May 01;37:15E.2.1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26344219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2015 Sep;38:65-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26216766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24599590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Jul;10(7):1293-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15324552</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000F13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:27795435
   |texte=   CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:27795435" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021