Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2',3'-Phosphoesterase HD Domain and a C-Terminal 5'-OH Polynucleotide Kinase Domain.

Identifieur interne : 000E76 ( PubMed/Curation ); précédent : 000E75; suivant : 000E77

Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2',3'-Phosphoesterase HD Domain and a C-Terminal 5'-OH Polynucleotide Kinase Domain.

Auteurs : Annum Munir [États-Unis] ; Stewart Shuman [Kiribati]

Source :

RBID : pubmed:27895092

Abstract

5'- and 3'-end-healing reactions are key steps in nucleic acid break repair in which 5'-OH ends are phosphorylated by a polynucleotide kinase (Pnk) and 3'-PO4 or 2',3'-cyclic-PO4 ends are hydrolyzed by a phosphoesterase to generate the 5'-PO4 and 3'-OH termini required for sealing by classic polynucleotide ligases. End-healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2',3'-phosphoesterase HD domain and a C-terminal 5'-OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5'-OH polynucleotides (9-mers or longer) in the presence of magnesium and any nucleoside triphosphate donor. HD-Pnk dephosphorylates RNA 2',3'-cyclic phosphate, RNA 3'-phosphate, RNA 2'-phosphate, and DNA 3'-phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper, or cobalt. HD-Pnk homologs are present in genera from 11 bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. IMPORTANCE The present study provides insights regarding the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnk as the exemplar of a novel clade of dual 5'- and 3'-end-healing enzymes that phosphorylate 5'-OH termini and dephosphorylate 2',3'-cyclic-PO4, 3'-PO4, and 2'-PO4 ends. The distinctive feature of HD-Pnk is its domain composition, i.e., a fusion of an N-terminal HD phosphohydrolase module and a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, same domain order, and similar polypeptide sizes are distributed widely among genera from 11 bacterial phyla.

DOI: 10.1128/JB.00739-16
PubMed: 27895092

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27895092

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2',3'-Phosphoesterase HD Domain and a C-Terminal 5'-OH Polynucleotide Kinase Domain.</title>
<author>
<name sortKey="Munir, Annum" sort="Munir, Annum" uniqKey="Munir A" first="Annum" last="Munir">Annum Munir</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular Biology Program, Sloan-Kettering Institute, New York, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shuman, Stewart" sort="Shuman, Stewart" uniqKey="Shuman S" first="Stewart" last="Shuman">Stewart Shuman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA s-shuman@ski.mskcc.org.</nlm:affiliation>
<country wicri:rule="url">Kiribati</country>
<wicri:regionArea>Molecular Biology Program, Sloan-Kettering Institute, New York, New York</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27895092</idno>
<idno type="pmid">27895092</idno>
<idno type="doi">10.1128/JB.00739-16</idno>
<idno type="wicri:Area/PubMed/Corpus">000E76</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E76</idno>
<idno type="wicri:Area/PubMed/Curation">000E76</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000E76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2',3'-Phosphoesterase HD Domain and a C-Terminal 5'-OH Polynucleotide Kinase Domain.</title>
<author>
<name sortKey="Munir, Annum" sort="Munir, Annum" uniqKey="Munir A" first="Annum" last="Munir">Annum Munir</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular Biology Program, Sloan-Kettering Institute, New York, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shuman, Stewart" sort="Shuman, Stewart" uniqKey="Shuman S" first="Stewart" last="Shuman">Stewart Shuman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA s-shuman@ski.mskcc.org.</nlm:affiliation>
<country wicri:rule="url">Kiribati</country>
<wicri:regionArea>Molecular Biology Program, Sloan-Kettering Institute, New York, New York</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of bacteriology</title>
<idno type="eISSN">1098-5530</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">5'- and 3'-end-healing reactions are key steps in nucleic acid break repair in which 5'-OH ends are phosphorylated by a polynucleotide kinase (Pnk) and 3'-PO
<sub>4</sub>
or 2',3'-cyclic-PO
<sub>4</sub>
ends are hydrolyzed by a phosphoesterase to generate the 5'-PO
<sub>4</sub>
and 3'-OH termini required for sealing by classic polynucleotide ligases. End-healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize
<i>Runella slithyformis</i>
HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2',3'-phosphoesterase HD domain and a C-terminal 5'-OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5'-OH polynucleotides (9-mers or longer) in the presence of magnesium and any nucleoside triphosphate donor. HD-Pnk dephosphorylates RNA 2',3'-cyclic phosphate, RNA 3'-phosphate, RNA 2'-phosphate, and DNA 3'-phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper, or cobalt. HD-Pnk homologs are present in genera from 11 bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase.
<b>IMPORTANCE</b>
The present study provides insights regarding the diversity of nucleic acid repair strategies via the characterization of
<i>Runella slithyformis</i>
HD-Pnk as the exemplar of a novel clade of dual 5'- and 3'-end-healing enzymes that phosphorylate 5'-OH termini and dephosphorylate 2',3'-cyclic-PO
<sub>4</sub>
, 3'-PO
<sub>4</sub>
, and 2'-PO
<sub>4</sub>
ends. The distinctive feature of HD-Pnk is its domain composition, i.e., a fusion of an N-terminal HD phosphohydrolase module and a C-terminal P-loop polynucleotide kinase module. Homologs of
<i>Runella</i>
HD-Pnk with the same domain composition, same domain order, and similar polypeptide sizes are distributed widely among genera from 11 bacterial phyla.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27895092</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5530</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>199</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
<Month>Feb</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of bacteriology</Title>
<ISOAbbreviation>J. Bacteriol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2',3'-Phosphoesterase HD Domain and a C-Terminal 5'-OH Polynucleotide Kinase Domain.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00739-16</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JB.00739-16</ELocationID>
<Abstract>
<AbstractText>5'- and 3'-end-healing reactions are key steps in nucleic acid break repair in which 5'-OH ends are phosphorylated by a polynucleotide kinase (Pnk) and 3'-PO
<sub>4</sub>
or 2',3'-cyclic-PO
<sub>4</sub>
ends are hydrolyzed by a phosphoesterase to generate the 5'-PO
<sub>4</sub>
and 3'-OH termini required for sealing by classic polynucleotide ligases. End-healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize
<i>Runella slithyformis</i>
HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2',3'-phosphoesterase HD domain and a C-terminal 5'-OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5'-OH polynucleotides (9-mers or longer) in the presence of magnesium and any nucleoside triphosphate donor. HD-Pnk dephosphorylates RNA 2',3'-cyclic phosphate, RNA 3'-phosphate, RNA 2'-phosphate, and DNA 3'-phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper, or cobalt. HD-Pnk homologs are present in genera from 11 bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase.
<b>IMPORTANCE</b>
The present study provides insights regarding the diversity of nucleic acid repair strategies via the characterization of
<i>Runella slithyformis</i>
HD-Pnk as the exemplar of a novel clade of dual 5'- and 3'-end-healing enzymes that phosphorylate 5'-OH termini and dephosphorylate 2',3'-cyclic-PO
<sub>4</sub>
, 3'-PO
<sub>4</sub>
, and 2'-PO
<sub>4</sub>
ends. The distinctive feature of HD-Pnk is its domain composition, i.e., a fusion of an N-terminal HD phosphohydrolase module and a C-terminal P-loop polynucleotide kinase module. Homologs of
<i>Runella</i>
HD-Pnk with the same domain composition, same domain order, and similar polypeptide sizes are distributed widely among genera from 11 bacterial phyla.</AbstractText>
<CopyrightInformation>Copyright © 2017 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Munir</LastName>
<ForeName>Annum</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shuman</LastName>
<ForeName>Stewart</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA s-shuman@ski.mskcc.org.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 CA008748</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM046330</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 GM046330</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>01</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Bacteriol</MedlineTA>
<NlmUniqueID>2985120R</NlmUniqueID>
<ISSNLinking>0021-9193</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">3′ phosphatase</Keyword>
<Keyword MajorTopicYN="N">nucleic acid repair</Keyword>
<Keyword MajorTopicYN="N">polynucleotide kinase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27895092</ArticleId>
<ArticleId IdType="pii">JB.00739-16</ArticleId>
<ArticleId IdType="doi">10.1128/JB.00739-16</ArticleId>
<ArticleId IdType="pmc">PMC5237116</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18874-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24198335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2006 Jan;12 (1):73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Nov 4;44(3):385-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22055185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2014 Dec;196(24):4285-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25266383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 May 16;272(20):13203-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9148937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan 7;41(1):355-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23118482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jun;41(11):5864-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23595150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20437-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24218597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Feb 5;268(4):2435-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8428918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6072-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22474365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9384-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19746965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Oct 2;56(1):43-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25280103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 7;278(45):43928-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12933796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 20;276(29):26868-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11335730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Jul 9;52(27):4734-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23721485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13248-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22847431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Jul 15;21(14):3873-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12110598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Jan;91(1):26-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24176013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Oct 18;30(22):4616-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22009198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Feb 15;30(4):1073-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(2):1152-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24150947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1998 Dec;23 (12 ):469-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9868367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Sep 9;286(36):31896-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21775431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E747-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Apr 17;6:6876</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25882814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Feb 18;280(7):5188-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15579472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 Oct 09;18(11):1189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21984210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2015 Apr 7;23(4):782-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25773141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 30;279(18):18220-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14747466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 14;281(28):19251-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2007 Aug 16;8:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17705817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Mar;38(4):1304-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19966275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Oct 9;326(5950):247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19815768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2016 Oct;22(10 ):1500-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27492257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 20;34(2):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16428247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2014 Sep;21(9):771-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25132177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2296-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22308407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2014 Apr;20(4):462-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24554441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2016 Jul;195(1):113-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27062940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2013 May;19(5):659-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23515942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Aug 27;279(35):36819-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15210699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2002 Sep;10(9):1249-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12220496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Apr 18;378(1):215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18353368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2005 Aug;11(8):1271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stand Genomic Sci. 2012 May 25;6(2):145-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 May 10;447(7141):222-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17495927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 16;286(50):43134-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22045815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jan 25;283(4):2176-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17951247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21022-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22171004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2012 Dec;18(12):2277-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23118415</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000E76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:27895092
   |texte=   Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2',3'-Phosphoesterase HD Domain and a C-Terminal 5'-OH Polynucleotide Kinase Domain.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:27895092" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021