Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water?

Identifieur interne : 000E45 ( PubMed/Curation ); précédent : 000E44; suivant : 000E46

Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water?

Auteurs : Yunwen Tao [États-Unis] ; Wenli Zou [États-Unis] ; Junteng Jia [République populaire de Chine] ; Wei Li [République populaire de Chine] ; Dieter Cremer [États-Unis]

Source :

RBID : pubmed:27996255

Abstract

The properties of liquid water are intimately related to the H-bond network among the individual water molecules. Utilizing vibrational spectroscopy and modeling water with DFT-optimized water clusters (6-mers and 50-mers), 16 out of a possible 36 different types of H-bonds are identified and ordered according to their intrinsic strength. The strongest H-bonds are obtained as a result of a concerted push-pull effect of four peripheral water molecules, which polarize the electron density in a way that supports charge transfer and partial covalent character of the targeted H-bond. For water molecules with tetra- and pentacoordinated O atoms, H-bonding is often associated with a geometrically unfavorable positioning of the acceptor lone pair and donor σ*(OH) orbitals so that electrostatic rather than covalent interactions increasingly dominate H-bonding. There is a striking linear dependence between the intrinsic strength of H-bonding as measured by the local H-bond stretching force constant and the delocalization energy associated with charge transfer. Molecular dynamics simulations for 1000-mers reveal that with increasing temperature weak, preferentially electrostatic H-bonds are broken, whereas the number of strong H-bonds increases. An explanation for the question why warm water freezes faster than cold water is given on a molecular basis.

DOI: 10.1021/acs.jctc.6b00735
PubMed: 27996255

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27996255

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water?</title>
<author>
<name sortKey="Tao, Yunwen" sort="Tao, Yunwen" uniqKey="Tao Y" first="Yunwen" last="Tao">Yunwen Tao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zou, Wenli" sort="Zou, Wenli" uniqKey="Zou W" first="Wenli" last="Zou">Wenli Zou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jia, Junteng" sort="Jia, Junteng" uniqKey="Jia J" first="Junteng" last="Jia">Junteng Jia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Wei" sort="Li, Wei" uniqKey="Li W" first="Wei" last="Li">Wei Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cremer, Dieter" sort="Cremer, Dieter" uniqKey="Cremer D" first="Dieter" last="Cremer">Dieter Cremer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27996255</idno>
<idno type="pmid">27996255</idno>
<idno type="doi">10.1021/acs.jctc.6b00735</idno>
<idno type="wicri:Area/PubMed/Corpus">000E45</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E45</idno>
<idno type="wicri:Area/PubMed/Curation">000E45</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000E45</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water?</title>
<author>
<name sortKey="Tao, Yunwen" sort="Tao, Yunwen" uniqKey="Tao Y" first="Yunwen" last="Tao">Yunwen Tao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zou, Wenli" sort="Zou, Wenli" uniqKey="Zou W" first="Wenli" last="Zou">Wenli Zou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jia, Junteng" sort="Jia, Junteng" uniqKey="Jia J" first="Junteng" last="Jia">Junteng Jia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Wei" sort="Li, Wei" uniqKey="Li W" first="Wei" last="Li">Wei Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cremer, Dieter" sort="Cremer, Dieter" uniqKey="Cremer D" first="Dieter" last="Cremer">Dieter Cremer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of chemical theory and computation</title>
<idno type="eISSN">1549-9626</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The properties of liquid water are intimately related to the H-bond network among the individual water molecules. Utilizing vibrational spectroscopy and modeling water with DFT-optimized water clusters (6-mers and 50-mers), 16 out of a possible 36 different types of H-bonds are identified and ordered according to their intrinsic strength. The strongest H-bonds are obtained as a result of a concerted push-pull effect of four peripheral water molecules, which polarize the electron density in a way that supports charge transfer and partial covalent character of the targeted H-bond. For water molecules with tetra- and pentacoordinated O atoms, H-bonding is often associated with a geometrically unfavorable positioning of the acceptor lone pair and donor σ
<sup>*</sup>
(OH) orbitals so that electrostatic rather than covalent interactions increasingly dominate H-bonding. There is a striking linear dependence between the intrinsic strength of H-bonding as measured by the local H-bond stretching force constant and the delocalization energy associated with charge transfer. Molecular dynamics simulations for 1000-mers reveal that with increasing temperature weak, preferentially electrostatic H-bonds are broken, whereas the number of strong H-bonds increases. An explanation for the question why warm water freezes faster than cold water is given on a molecular basis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27996255</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>06</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1549-9626</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>01</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Journal of chemical theory and computation</Title>
<ISOAbbreviation>J Chem Theory Comput</ISOAbbreviation>
</Journal>
<ArticleTitle>Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water?</ArticleTitle>
<Pagination>
<MedlinePgn>55-76</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.jctc.6b00735</ELocationID>
<Abstract>
<AbstractText>The properties of liquid water are intimately related to the H-bond network among the individual water molecules. Utilizing vibrational spectroscopy and modeling water with DFT-optimized water clusters (6-mers and 50-mers), 16 out of a possible 36 different types of H-bonds are identified and ordered according to their intrinsic strength. The strongest H-bonds are obtained as a result of a concerted push-pull effect of four peripheral water molecules, which polarize the electron density in a way that supports charge transfer and partial covalent character of the targeted H-bond. For water molecules with tetra- and pentacoordinated O atoms, H-bonding is often associated with a geometrically unfavorable positioning of the acceptor lone pair and donor σ
<sup>*</sup>
(OH) orbitals so that electrostatic rather than covalent interactions increasingly dominate H-bonding. There is a striking linear dependence between the intrinsic strength of H-bonding as measured by the local H-bond stretching force constant and the delocalization energy associated with charge transfer. Molecular dynamics simulations for 1000-mers reveal that with increasing temperature weak, preferentially electrostatic H-bonds are broken, whereas the number of strong H-bonds increases. An explanation for the question why warm water freezes faster than cold water is given on a molecular basis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tao</LastName>
<ForeName>Yunwen</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zou</LastName>
<ForeName>Wenli</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Junteng</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cremer</LastName>
<ForeName>Dieter</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0002-6213-5555</Identifier>
<AffiliationInfo>
<Affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Theory Comput</MedlineTA>
<NlmUniqueID>101232704</NlmUniqueID>
<ISSNLinking>1549-9618</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27996255</ArticleId>
<ArticleId IdType="doi">10.1021/acs.jctc.6b00735</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E45 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000E45 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:27996255
   |texte=   Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:27996255" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021