Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Epigenetic Landscape during Coronavirus Infection.

Identifieur interne : 000D77 ( PubMed/Curation ); précédent : 000D76; suivant : 000D78

Epigenetic Landscape during Coronavirus Infection.

Auteurs : Alexandra Sch Fer [États-Unis] ; Ralph S. Baric [États-Unis]

Source :

RBID : pubmed:28212305

Abstract

Coronaviruses (CoV) comprise a large group of emerging human and animal pathogens, including the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) strains. The molecular mechanisms regulating emerging coronavirus pathogenesis are complex and include virus-host interactions associated with entry, replication, egress and innate immune control. Epigenetics research investigates the genetic and non-genetic factors that regulate phenotypic variation, usually caused by external and environmental factors that alter host expression patterns and performance without any change in the underlying genotype. Epigenetic modifications, such as histone modifications, DNA methylation, chromatin remodeling, and non-coding RNAs, function as important regulators that remodel host chromatin, altering host expression patterns and networks in a highly flexible manner. For most of the past two and a half decades, research has focused on the molecular mechanisms by which RNA viruses antagonize the signaling and sensing components that regulate induction of the host innate immune and antiviral defense programs upon infection. More recently, a growing body of evidence supports the hypothesis that viruses, even lytic RNA viruses that replicate in the cytoplasm, have developed intricate, highly evolved, and well-coordinated processes that are designed to regulate the host epigenome, and control host innate immune antiviral defense processes, thereby promoting robust virus replication and pathogenesis. In this article, we discuss the strategies that are used to evaluate the mechanisms by which viruses regulate the host epigenome, especially focusing on highly pathogenic respiratory RNA virus infections as a model. By combining measures of epigenome reorganization with RNA and proteomic datasets, we articulate a spatial-temporal data integration approach to identify regulatory genomic clusters and regions that play a crucial role in the host's innate immune response, thereby defining a new viral antagonism mechanism following emerging coronavirus infection.

DOI: 10.3390/pathogens6010008
PubMed: 28212305

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28212305

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Epigenetic Landscape during Coronavirus Infection.</title>
<author>
<name sortKey="Sch Fer, Alexandra" sort="Sch Fer, Alexandra" uniqKey="Sch Fer A" first="Alexandra" last="Sch Fer">Alexandra Sch Fer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599 USA. aschaefe@email.unc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Epidemiology, University of North Carolina, Chapel Hill</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599 USA. rbaric@email.unc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Epidemiology, University of North Carolina, Chapel Hill</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28212305</idno>
<idno type="pmid">28212305</idno>
<idno type="doi">10.3390/pathogens6010008</idno>
<idno type="wicri:Area/PubMed/Corpus">000D77</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000D77</idno>
<idno type="wicri:Area/PubMed/Curation">000D77</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000D77</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Epigenetic Landscape during Coronavirus Infection.</title>
<author>
<name sortKey="Sch Fer, Alexandra" sort="Sch Fer, Alexandra" uniqKey="Sch Fer A" first="Alexandra" last="Sch Fer">Alexandra Sch Fer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599 USA. aschaefe@email.unc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Epidemiology, University of North Carolina, Chapel Hill</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599 USA. rbaric@email.unc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Epidemiology, University of North Carolina, Chapel Hill</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pathogens (Basel, Switzerland)</title>
<idno type="ISSN">2076-0817</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronaviruses (CoV) comprise a large group of emerging human and animal pathogens, including the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) strains. The molecular mechanisms regulating emerging coronavirus pathogenesis are complex and include virus-host interactions associated with entry, replication, egress and innate immune control. Epigenetics research investigates the genetic and non-genetic factors that regulate phenotypic variation, usually caused by external and environmental factors that alter host expression patterns and performance without any change in the underlying genotype. Epigenetic modifications, such as histone modifications, DNA methylation, chromatin remodeling, and non-coding RNAs, function as important regulators that remodel host chromatin, altering host expression patterns and networks in a highly flexible manner. For most of the past two and a half decades, research has focused on the molecular mechanisms by which RNA viruses antagonize the signaling and sensing components that regulate induction of the host innate immune and antiviral defense programs upon infection. More recently, a growing body of evidence supports the hypothesis that viruses, even lytic RNA viruses that replicate in the cytoplasm, have developed intricate, highly evolved, and well-coordinated processes that are designed to regulate the host epigenome, and control host innate immune antiviral defense processes, thereby promoting robust virus replication and pathogenesis. In this article, we discuss the strategies that are used to evaluate the mechanisms by which viruses regulate the host epigenome, especially focusing on highly pathogenic respiratory RNA virus infections as a model. By combining measures of epigenome reorganization with RNA and proteomic datasets, we articulate a spatial-temporal data integration approach to identify regulatory genomic clusters and regions that play a crucial role in the host's innate immune response, thereby defining a new viral antagonism mechanism following emerging coronavirus infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28212305</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2076-0817</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Feb</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Pathogens (Basel, Switzerland)</Title>
<ISOAbbreviation>Pathogens</ISOAbbreviation>
</Journal>
<ArticleTitle>Epigenetic Landscape during Coronavirus Infection.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E8</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/pathogens6010008</ELocationID>
<Abstract>
<AbstractText>Coronaviruses (CoV) comprise a large group of emerging human and animal pathogens, including the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) strains. The molecular mechanisms regulating emerging coronavirus pathogenesis are complex and include virus-host interactions associated with entry, replication, egress and innate immune control. Epigenetics research investigates the genetic and non-genetic factors that regulate phenotypic variation, usually caused by external and environmental factors that alter host expression patterns and performance without any change in the underlying genotype. Epigenetic modifications, such as histone modifications, DNA methylation, chromatin remodeling, and non-coding RNAs, function as important regulators that remodel host chromatin, altering host expression patterns and networks in a highly flexible manner. For most of the past two and a half decades, research has focused on the molecular mechanisms by which RNA viruses antagonize the signaling and sensing components that regulate induction of the host innate immune and antiviral defense programs upon infection. More recently, a growing body of evidence supports the hypothesis that viruses, even lytic RNA viruses that replicate in the cytoplasm, have developed intricate, highly evolved, and well-coordinated processes that are designed to regulate the host epigenome, and control host innate immune antiviral defense processes, thereby promoting robust virus replication and pathogenesis. In this article, we discuss the strategies that are used to evaluate the mechanisms by which viruses regulate the host epigenome, especially focusing on highly pathogenic respiratory RNA virus infections as a model. By combining measures of epigenome reorganization with RNA and proteomic datasets, we articulate a spatial-temporal data integration approach to identify regulatory genomic clusters and regions that play a crucial role in the host's innate immune response, thereby defining a new viral antagonism mechanism following emerging coronavirus infection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schäfer</LastName>
<ForeName>Alexandra</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599 USA. aschaefe@email.unc.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599 USA. rbaric@email.unc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U19 AI100625</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI106772</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI109761</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Pathogens</MedlineTA>
<NlmUniqueID>101596317</NlmUniqueID>
<ISSNLinking>2076-0817</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">coronaviruses</Keyword>
<Keyword MajorTopicYN="N">epigenetics</Keyword>
<Keyword MajorTopicYN="N">systems biology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>02</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28212305</ArticleId>
<ArticleId IdType="pii">pathogens6010008</ArticleId>
<ArticleId IdType="doi">10.3390/pathogens6010008</ArticleId>
<ArticleId IdType="pmc">PMC5371896</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Immunol. 1997 Feb;9(1):4-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9039775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Feb;39(2):1315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21604175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2008 Jan;44(1):35, 37, 39 passim</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18254377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2014 Jan;14(1):36-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24362405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):3048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26976607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epigenetics. 2011 Jan;6(1):34-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20818161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2011 Apr;9(4):e1001046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21526222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2009 Jul;48(3):233-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19303047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2015 Jan 26;6:2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25674102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Dev Biol. 2014 Sep 17;2:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25364758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Feb 23;128(4):635-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jun 14;447(7146):799-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17571346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2016 Oct 14;17 (11):661-678</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27739532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Dec;4(12):e1000240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Sep 2;333(6047):1303-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21817016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2002;20:197-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11861602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2001 Nov;1(2):135-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11905821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9821-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8790415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2013 Nov;14(11):699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24105322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Jun;17(6):877-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2015 Dec;35:68-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26496625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Sep;22(9):1775-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2007 Aug;4(8):651-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17558387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Cell Biol. 2015 Mar;93(3):226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25666097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2012 Dec;18(12):1820-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23142821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Jul 12;12(8):529-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21747404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 Mar;7(3 Suppl):S56-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20195258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2014 Dec 07;11:209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25481026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2013;754:3-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22956494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Jan;12(1):7-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21116306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Dec;11(12):836-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24217413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 12;312(5775):879-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2008 Mar;9(3):179-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18250624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jan 23;421(6921):448-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12540921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 1997;26:83-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9241414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1994 Aug 1;202(2):1018-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8030202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Apr 21;125(2):315-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16630819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 May 18;129(4):823-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17512414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Mar 1;15(5):1112-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8605881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Cell Biol. 2015 Mar;93(3):233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25559622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jan 6;403(6765):41-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10638745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jan 24;26(2):412-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17245431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Data. 2014 Oct 14;1:140033</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25977790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2008 Mar 13;358(11):1148-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18337604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Aug;14 (8):523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27344959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Nov 10;103(4):667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11106736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Sep;22(9):1813-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Paediatr Respir Rev. 2004 Dec;5(4):262-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15531249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15511-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Apr;88(8):4251-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24478444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Mar 19;140(6):833-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20303874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 May 20;5(3):e01174-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24846384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Sep;22(9):1760-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Feb 1;109(3):1131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16985170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2014 Jun 02;6(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24890513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2012 Apr 9;209(4):661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22412156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2008 Jun;9(6):465-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18463664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):783-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2016 Feb 10;19(2):150-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26867174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nurs Leadersh (Tor Ont). 2005 Dec;18(4):41-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16463643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Feb 23;128(4):693-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2015 Aug;26:123-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26232586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Care Res Pract. 2010;2010:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20948883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2014 Jun;14(6):361-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24854588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Apr;95(Pt 4):874-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24443473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2012 Jun;2(3):264-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22572391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Nov;87(22):12489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Apr 11;300(5617):286-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jan;5(1):16-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18165802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2014 Apr;15(4):272-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24614317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 May 15;25(10):1010-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21576262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 May;278(10):1598-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21395977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Oct 26;12 (10 ):e1005982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27783669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2004 Feb;40(12):845-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14698223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 May 29;13(7):484-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22641018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Dec;89(24):12330-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26423942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2011 Jun 1;90(3):430-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21558279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Mar 29;7(2):e00258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27025250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Sep 26;155(1):39-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24074860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(11):e1003007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23209403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2015 Dec;21(12):1508-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26552008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2011 Oct 30;14(12):1607-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2015 Feb;16(2):85-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25582081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Jan 30;505(7485):691-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24284630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5856-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Nov;87(21):11831-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23986576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Apr;87(7):3885-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23365422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2004 Jul 29;359(1447):1115-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15306397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2013 Jul;139(3):285-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23521628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 May 24;447(7143):396-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17522671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(6):3391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2008 Oct;89(Pt 10):2359-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18796704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Oct;10(10):669-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19736561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 10;293(5532):1074-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Apr 24;54(2):245-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24766888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Feb 23;128(4):669-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2013 Aug;13(4):582-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23816801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Aug;37(8):853-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2014;32:513-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24555472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epigenetics Chromatin. 2014 Nov 20;7(1):33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25473421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 May 26;6(3):e00638-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26015500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2001 Jan;2(1):15-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11135571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2010 Oct;18(10):439-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2013 Jul-Aug;15(8-9):625-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23791956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2016 Jun 23;12 (6):e1006105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27336614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2003 Mar;33 Suppl:245-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12610534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2003 Aug;9(8):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12928032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Mar 14;483(7390):428-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22419161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Nov 18;468(7322):452-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21085181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2009 Nov;15(11):1312-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19855399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr 08;6(4):e1000849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20386712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2014 Apr;184(4):897-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24525150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2013 Sep;255(1):256-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23947361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2010 Jul;11(7):565-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20562839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 May 12;90(11):5399-414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27009949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2014;32:489-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24555473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2013 Apr;23(2):116-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23266217</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000D77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28212305
   |texte=   Epigenetic Landscape during Coronavirus Infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:28212305" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021