Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

H-Bond Self-Assembly: Folding versus Duplex Formation.

Identifieur interne : 000C97 ( PubMed/Curation ); précédent : 000C96; suivant : 000C98

H-Bond Self-Assembly: Folding versus Duplex Formation.

Auteurs : Diego Nú Ez-Villanueva [Royaume-Uni] ; Giulia Iadevaia [Royaume-Uni] ; Alexander E. Stross [Royaume-Uni] ; Michael A. Jinks [Royaume-Uni] ; Jonathan A. Swain [Royaume-Uni] ; Christopher A. Hunter [Royaume-Uni]

Source :

RBID : pubmed:28470070

Abstract

Linear oligomers equipped with complementary H-bond donor (D) and acceptor (A) sites can interact via intermolecular H-bonds to form duplexes or fold via intramolecular H-bonds. These competing equilibria have been quantified using NMR titration and dilution experiments for seven systems featuring different recognition sites and backbones. For all seven architectures, duplex formation is observed for homo-sequence 2-mers (AA·DD) where there are no competing folding equilibria. The corresponding hetero-sequence AD 2-mers also form duplexes, but the observed self-association constants are strongly affected by folding equilibria in the monomeric states. When the backbone is flexible (five or more rotatable bonds separating the recognition sites), intramolecular H-bonding is favored, and the folded state is highly populated. For these systems, the stability of the AD·AD duplex is 1-2 orders of magnitude lower than that of the corresponding AA·DD duplex. However, for three architectures which have more rigid backbones (fewer than five rotatable bonds), intramolecular interactions are not observed, and folding does not compete with duplex formation. These systems are promising candidates for the development of longer, mixed-sequence synthetic information molecules that show sequence-selective duplex formation.

DOI: 10.1021/jacs.7b01357
PubMed: 28470070

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28470070

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">H-Bond Self-Assembly: Folding versus Duplex Formation.</title>
<author>
<name sortKey="Nu Ez Villanueva, Diego" sort="Nu Ez Villanueva, Diego" uniqKey="Nu Ez Villanueva D" first="Diego" last="Nú Ez-Villanueva">Diego Nú Ez-Villanueva</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Iadevaia, Giulia" sort="Iadevaia, Giulia" uniqKey="Iadevaia G" first="Giulia" last="Iadevaia">Giulia Iadevaia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Stross, Alexander E" sort="Stross, Alexander E" uniqKey="Stross A" first="Alexander E" last="Stross">Alexander E. Stross</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jinks, Michael A" sort="Jinks, Michael A" uniqKey="Jinks M" first="Michael A" last="Jinks">Michael A. Jinks</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Swain, Jonathan A" sort="Swain, Jonathan A" uniqKey="Swain J" first="Jonathan A" last="Swain">Jonathan A. Swain</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hunter, Christopher A" sort="Hunter, Christopher A" uniqKey="Hunter C" first="Christopher A" last="Hunter">Christopher A. Hunter</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28470070</idno>
<idno type="pmid">28470070</idno>
<idno type="doi">10.1021/jacs.7b01357</idno>
<idno type="wicri:Area/PubMed/Corpus">000C97</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C97</idno>
<idno type="wicri:Area/PubMed/Curation">000C97</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000C97</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">H-Bond Self-Assembly: Folding versus Duplex Formation.</title>
<author>
<name sortKey="Nu Ez Villanueva, Diego" sort="Nu Ez Villanueva, Diego" uniqKey="Nu Ez Villanueva D" first="Diego" last="Nú Ez-Villanueva">Diego Nú Ez-Villanueva</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Iadevaia, Giulia" sort="Iadevaia, Giulia" uniqKey="Iadevaia G" first="Giulia" last="Iadevaia">Giulia Iadevaia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Stross, Alexander E" sort="Stross, Alexander E" uniqKey="Stross A" first="Alexander E" last="Stross">Alexander E. Stross</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jinks, Michael A" sort="Jinks, Michael A" uniqKey="Jinks M" first="Michael A" last="Jinks">Michael A. Jinks</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Swain, Jonathan A" sort="Swain, Jonathan A" uniqKey="Swain J" first="Jonathan A" last="Swain">Jonathan A. Swain</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hunter, Christopher A" sort="Hunter, Christopher A" uniqKey="Hunter C" first="Christopher A" last="Hunter">Christopher A. Hunter</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of the American Chemical Society</title>
<idno type="eISSN">1520-5126</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Linear oligomers equipped with complementary H-bond donor (D) and acceptor (A) sites can interact via intermolecular H-bonds to form duplexes or fold via intramolecular H-bonds. These competing equilibria have been quantified using NMR titration and dilution experiments for seven systems featuring different recognition sites and backbones. For all seven architectures, duplex formation is observed for homo-sequence 2-mers (AA·DD) where there are no competing folding equilibria. The corresponding hetero-sequence AD 2-mers also form duplexes, but the observed self-association constants are strongly affected by folding equilibria in the monomeric states. When the backbone is flexible (five or more rotatable bonds separating the recognition sites), intramolecular H-bonding is favored, and the folded state is highly populated. For these systems, the stability of the AD·AD duplex is 1-2 orders of magnitude lower than that of the corresponding AA·DD duplex. However, for three architectures which have more rigid backbones (fewer than five rotatable bonds), intramolecular interactions are not observed, and folding does not compete with duplex formation. These systems are promising candidates for the development of longer, mixed-sequence synthetic information molecules that show sequence-selective duplex formation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28470070</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>05</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5126</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>139</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2017</Year>
<Month>05</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Journal of the American Chemical Society</Title>
<ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation>
</Journal>
<ArticleTitle>H-Bond Self-Assembly: Folding versus Duplex Formation.</ArticleTitle>
<Pagination>
<MedlinePgn>6654-6662</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/jacs.7b01357</ELocationID>
<Abstract>
<AbstractText>Linear oligomers equipped with complementary H-bond donor (D) and acceptor (A) sites can interact via intermolecular H-bonds to form duplexes or fold via intramolecular H-bonds. These competing equilibria have been quantified using NMR titration and dilution experiments for seven systems featuring different recognition sites and backbones. For all seven architectures, duplex formation is observed for homo-sequence 2-mers (AA·DD) where there are no competing folding equilibria. The corresponding hetero-sequence AD 2-mers also form duplexes, but the observed self-association constants are strongly affected by folding equilibria in the monomeric states. When the backbone is flexible (five or more rotatable bonds separating the recognition sites), intramolecular H-bonding is favored, and the folded state is highly populated. For these systems, the stability of the AD·AD duplex is 1-2 orders of magnitude lower than that of the corresponding AA·DD duplex. However, for three architectures which have more rigid backbones (fewer than five rotatable bonds), intramolecular interactions are not observed, and folding does not compete with duplex formation. These systems are promising candidates for the development of longer, mixed-sequence synthetic information molecules that show sequence-selective duplex formation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Núñez-Villanueva</LastName>
<ForeName>Diego</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0002-1005-1464</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Iadevaia</LastName>
<ForeName>Giulia</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stross</LastName>
<ForeName>Alexander E</ForeName>
<Initials>AE</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jinks</LastName>
<ForeName>Michael A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Swain</LastName>
<ForeName>Jonathan A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hunter</LastName>
<ForeName>Christopher A</ForeName>
<Initials>CA</Initials>
<Identifier Source="ORCID">0000-0002-5182-1859</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>320539</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>05</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Am Chem Soc</MedlineTA>
<NlmUniqueID>7503056</NlmUniqueID>
<ISSNLinking>0002-7863</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28470070</ArticleId>
<ArticleId IdType="doi">10.1021/jacs.7b01357</ArticleId>
<ArticleId IdType="pmc">PMC5469522</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Chem Biol. 1999 Dec;3(6):688-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Oct 12;407(6805):720-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11048713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2001 Jul 2;7(13):2810-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11486957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5394-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2001 Dec;101(12):3893-4012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11740924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 May 8;124(18):5074-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11982372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 May 14;125(19):5707-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12733909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1953 May 30;171(4361):964-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13063483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2004 Oct;8(5):547-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15450499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2004 Oct 11;43(40):5310-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15468180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2005 Feb 16;127(6):1719-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15701006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem Anticancer Agents. 2005 Jul;5(4):373-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2006 Jul 17;12(21):5632-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16680790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2006 Jul 19;128(28):9074-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16834381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Aug 30;346(6287):818-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1697402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(19):5402-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17012276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Jan;8(1):23-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17183358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2007 Feb 7;129(5):1312-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2007 May;3(5):252-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17438550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2007 Jun;32(6):271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17493823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 2007 Jun 22;72(13):4936-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17530806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomol Eng. 2007 Oct;24(4):381-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17627883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phys Chem. 2008;59:79-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17937599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Oct 22;130(42):14008-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18823119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2009;48(41):7488-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19746372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2010 May 28;46(20):3487-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20419181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Soc Rev. 2009 Dec;38(12):3316-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20449051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Lett. 2010 Jul 16;12(14):3156-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2010 Dec;74(4):570-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Jan 26;133(3):582-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21174413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Mar 4;331(6021):1172-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21385710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 2011 Apr 15;76(8):2723-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21417288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2011 Jun 7;47(21):5933-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21483969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Dec 21;133(50):20416-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22112051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2012 Dec 18;45(12):2077-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22578061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 2012 Sep 21;77(18):7815-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22924633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Oct 24;134(42):17814-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23013524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Feb 6;135(5):1853-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23360075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Sep 4;135(35):13129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23964567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2013 Nov 7;15(41):18262-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24064723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Feb 4;137(4):1501-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25581227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem. 2015 Apr;7(4):334-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25803472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2016 Jun 1;138(21):6852-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27163942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2016 Nov 10;59(21):9599-9621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27362955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2016 Aug 17;138(32):10314-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27428616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2016 Nov 23;116(22):13752-13990</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2016 Nov 23;138(46):15114-15117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27933885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Sci. 2017 Jan 1;8(1):206-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28451167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Sci. 2016 Mar 1;7(3):1760-1767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28936325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Sci. 2016 Jan 1;7(1):94-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29861969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Sci. 2016 Sep 1;7(9):5686-5691</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30034707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1973 Jul 20;181(4096):223-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4124164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 1998 Jun;8(3):278-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9666322</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000C97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28470070
   |texte=   H-Bond Self-Assembly: Folding versus Duplex Formation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:28470070" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021