Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

FastGT: an alignment-free method for calling common SNVs directly from raw sequencing reads.

Identifieur interne : 000C77 ( PubMed/Curation ); précédent : 000C76; suivant : 000C78

FastGT: an alignment-free method for calling common SNVs directly from raw sequencing reads.

Auteurs : Fanny-Dhelia Pajuste [Estonie] ; Lauris Kaplinski [Estonie] ; M Rt Möls [Estonie] ; Tarmo Puurand [Estonie] ; Maarja Lepamets [Estonie] ; Maido Remm [Estonie]

Source :

RBID : pubmed:28566690

Descripteurs français

English descriptors

Abstract

We have developed a computational method that counts the frequencies of unique k-mers in FASTQ-formatted genome data and uses this information to infer the genotypes of known variants. FastGT can detect the variants in a 30x genome in less than 1 hour using ordinary low-cost server hardware. The overall concordance with the genotypes of two Illumina "Platinum" genomes is 99.96%, and the concordance with the genotypes of the Illumina HumanOmniExpress is 99.82%. Our method provides k-mer database that can be used for the simultaneous genotyping of approximately 30 million single nucleotide variants (SNVs), including >23,000 SNVs from Y chromosome. The source code of FastGT software is available at GitHub (https://github.com/bioinfo-ut/GenomeTester4/).

DOI: 10.1038/s41598-017-02487-5
PubMed: 28566690

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28566690

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">FastGT: an alignment-free method for calling common SNVs directly from raw sequencing reads.</title>
<author>
<name sortKey="Pajuste, Fanny Dhelia" sort="Pajuste, Fanny Dhelia" uniqKey="Pajuste F" first="Fanny-Dhelia" last="Pajuste">Fanny-Dhelia Pajuste</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kaplinski, Lauris" sort="Kaplinski, Lauris" uniqKey="Kaplinski L" first="Lauris" last="Kaplinski">Lauris Kaplinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mols, M Rt" sort="Mols, M Rt" uniqKey="Mols M" first="M Rt" last="Möls">M Rt Möls</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Puurand, Tarmo" sort="Puurand, Tarmo" uniqKey="Puurand T" first="Tarmo" last="Puurand">Tarmo Puurand</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lepamets, Maarja" sort="Lepamets, Maarja" uniqKey="Lepamets M" first="Maarja" last="Lepamets">Maarja Lepamets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Remm, Maido" sort="Remm, Maido" uniqKey="Remm M" first="Maido" last="Remm">Maido Remm</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia. maido.remm@ut.ee.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28566690</idno>
<idno type="pmid">28566690</idno>
<idno type="doi">10.1038/s41598-017-02487-5</idno>
<idno type="wicri:Area/PubMed/Corpus">000C77</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C77</idno>
<idno type="wicri:Area/PubMed/Curation">000C77</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000C77</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">FastGT: an alignment-free method for calling common SNVs directly from raw sequencing reads.</title>
<author>
<name sortKey="Pajuste, Fanny Dhelia" sort="Pajuste, Fanny Dhelia" uniqKey="Pajuste F" first="Fanny-Dhelia" last="Pajuste">Fanny-Dhelia Pajuste</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kaplinski, Lauris" sort="Kaplinski, Lauris" uniqKey="Kaplinski L" first="Lauris" last="Kaplinski">Lauris Kaplinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mols, M Rt" sort="Mols, M Rt" uniqKey="Mols M" first="M Rt" last="Möls">M Rt Möls</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Puurand, Tarmo" sort="Puurand, Tarmo" uniqKey="Puurand T" first="Tarmo" last="Puurand">Tarmo Puurand</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lepamets, Maarja" sort="Lepamets, Maarja" uniqKey="Lepamets M" first="Maarja" last="Lepamets">Maarja Lepamets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Remm, Maido" sort="Remm, Maido" uniqKey="Remm M" first="Maido" last="Remm">Maido Remm</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia. maido.remm@ut.ee.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, University of Tartu, Tartu</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Bayes Theorem</term>
<term>Benchmarking</term>
<term>Genome, Human</term>
<term>Genotype</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Humans</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Reproducibility of Results</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Sequence Analysis, DNA (statistics & numerical data)</term>
<term>Software</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de séquence d'ADN ()</term>
<term>Génome humain</term>
<term>Génotype</term>
<term>Humains</term>
<term>Logiciel</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Reproductibilité des résultats</term>
<term>Référenciation</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Théorème de Bayes</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Bayes Theorem</term>
<term>Benchmarking</term>
<term>Genome, Human</term>
<term>Genotype</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Humans</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Reproducibility of Results</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de séquence d'ADN</term>
<term>Génome humain</term>
<term>Génotype</term>
<term>Humains</term>
<term>Logiciel</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Reproductibilité des résultats</term>
<term>Référenciation</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Théorème de Bayes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have developed a computational method that counts the frequencies of unique k-mers in FASTQ-formatted genome data and uses this information to infer the genotypes of known variants. FastGT can detect the variants in a 30x genome in less than 1 hour using ordinary low-cost server hardware. The overall concordance with the genotypes of two Illumina "Platinum" genomes is 99.96%, and the concordance with the genotypes of the Illumina HumanOmniExpress is 99.82%. Our method provides k-mer database that can be used for the simultaneous genotyping of approximately 30 million single nucleotide variants (SNVs), including >23,000 SNVs from Y chromosome. The source code of FastGT software is available at GitHub (https://github.com/bioinfo-ut/GenomeTester4/).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28566690</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>05</Month>
<Day>31</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>FastGT: an alignment-free method for calling common SNVs directly from raw sequencing reads.</ArticleTitle>
<Pagination>
<MedlinePgn>2537</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-017-02487-5</ELocationID>
<Abstract>
<AbstractText>We have developed a computational method that counts the frequencies of unique k-mers in FASTQ-formatted genome data and uses this information to infer the genotypes of known variants. FastGT can detect the variants in a 30x genome in less than 1 hour using ordinary low-cost server hardware. The overall concordance with the genotypes of two Illumina "Platinum" genomes is 99.96%, and the concordance with the genotypes of the Illumina HumanOmniExpress is 99.82%. Our method provides k-mer database that can be used for the simultaneous genotyping of approximately 30 million single nucleotide variants (SNVs), including >23,000 SNVs from Y chromosome. The source code of FastGT software is available at GitHub (https://github.com/bioinfo-ut/GenomeTester4/).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pajuste</LastName>
<ForeName>Fanny-Dhelia</ForeName>
<Initials>FD</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaplinski</LastName>
<ForeName>Lauris</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Möls</LastName>
<ForeName>Märt</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Puurand</LastName>
<ForeName>Tarmo</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lepamets</LastName>
<ForeName>Maarja</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Remm</LastName>
<ForeName>Maido</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia. maido.remm@ut.ee.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>05</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="Y">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001499" MajorTopicYN="N">Bayes Theorem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019985" MajorTopicYN="N">Benchmarking</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015894" MajorTopicYN="Y">Genome, Human</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="Y">Software</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>07</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>04</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28566690</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-017-02487-5</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-017-02487-5</ArticleId>
<ArticleId IdType="pmc">PMC5451431</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PeerJ. 2017 May 18;5:e3353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28533988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e30377</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22276185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(11):509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25398208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Aug 15;28(16):2097-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22668792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Jul 15;30(14):1950-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24618471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 Jan;27(1):157-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27903644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19289445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Oct 15;30(20):2843-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24974202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Apr 15;31(8):1169-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25504847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Mar 15;27(6):764-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Oct 12;338(6104):222-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jun 17;10(6):e0130821</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26083032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Sep;20(9):1297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20644199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2014 Jan;52(1):139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Med. 2011 Nov 22;3(11):74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22113004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Med. 2013 Mar 27;5(3):28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23537139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 1;26(5):589-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Feb 25;6:6275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25711446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Genomics. 2014 Jul 30;8:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25078893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2016 Mar 11;17 :125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26968756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Mar 1;29(5):652-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23325618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D7-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26615191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2010 Nov;17(11):1549-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20973743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2015 Dec 03;4:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26640690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Dec;46(12):1350-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25326702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Mar;32(3):246-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24531798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2016 Jun 20;17(1):132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27323842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 May 15;31(10):1577-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25609790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Nov 15;30(22):3264-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25075116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 May 15;31(10):1569-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25609798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014 Mar 03;15(3):R46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24580807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1999 Aug;9(8):677-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10447503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 May 29;14(5):R51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23718773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2014 Aug 1;546(1):25-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24858075</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000C77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28566690
   |texte=   FastGT: an alignment-free method for calling common SNVs directly from raw sequencing reads.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:28566690" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021