Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner.

Identifieur interne : 000B10 ( PubMed/Curation ); précédent : 000B09; suivant : 000B11

The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner.

Auteurs : Alex L. Lai [États-Unis] ; Jean K. Millet [États-Unis] ; Susan Daniel [États-Unis] ; Jack H. Freed [États-Unis] ; Gary R. Whittaker [États-Unis]

Source :

RBID : pubmed:29056462

Descripteurs français

English descriptors

Abstract

Coronaviruses (CoVs) are a major infectious disease threat and include the pathogenic human pathogens of zoonotic origin: severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV). Entry of CoVs into host cells is mediated by the viral spike (S) protein, which is structurally categorized as a class I viral fusion protein, within the same group as influenza virus and HIV. However, S proteins have two distinct cleavage sites that can be activated by a much wider range of proteases. The exact location of the CoV fusion peptide (FP) has been disputed. However, most evidence suggests that the domain immediately downstream of the S2' cleavage site is the FP (amino acids 798-818 SFIEDLLFNKVTLADAGFMKQY for SARS-CoV, FP1). In our previous electron spin resonance spectroscopic studies, the membrane-ordering effect of influenza virus, HIV, and Dengue virus FPs has been consistently observed. In this study, we used this effect as a criterion to identify and characterize the bona fide SARS-CoV FP. Our results indicate that both FP1 and the region immediately downstream (amino acids 816-835 KQYGECLGDINARDLICAQKF, FP2) induce significant membrane ordering. Furthermore, their effects are calcium dependent, which is consistent with in vivo data showing that calcium is required for SARS-CoV S-mediated fusion. Isothermal titration calorimetry showed a direct interaction between calcium cations and both FPs. This Ca2+-dependency membrane ordering was not observed with influenza FP, indicating that the CoV FP exhibits a mechanistically different behavior. Membrane-ordering effects are greater and penetrate deeper into membranes when FP1 and FP2 act in a concerted manner, suggesting that they form an extended fusion "platform."

DOI: 10.1016/j.jmb.2017.10.017
PubMed: 29056462

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29056462

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner.</title>
<author>
<name sortKey="Lai, Alex L" sort="Lai, Alex L" uniqKey="Lai A" first="Alex L" last="Lai">Alex L. Lai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Millet, Jean K" sort="Millet, Jean K" uniqKey="Millet J" first="Jean K" last="Millet">Jean K. Millet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Daniel, Susan" sort="Daniel, Susan" uniqKey="Daniel S" first="Susan" last="Daniel">Susan Daniel</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Freed, Jack H" sort="Freed, Jack H" uniqKey="Freed J" first="Jack H" last="Freed">Jack H. Freed</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Whittaker, Gary R" sort="Whittaker, Gary R" uniqKey="Whittaker G" first="Gary R" last="Whittaker">Gary R. Whittaker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, United States. Electronic address: gary.whittaker@cornell.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29056462</idno>
<idno type="pmid">29056462</idno>
<idno type="doi">10.1016/j.jmb.2017.10.017</idno>
<idno type="wicri:Area/PubMed/Corpus">000B10</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B10</idno>
<idno type="wicri:Area/PubMed/Curation">000B10</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000B10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner.</title>
<author>
<name sortKey="Lai, Alex L" sort="Lai, Alex L" uniqKey="Lai A" first="Alex L" last="Lai">Alex L. Lai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Millet, Jean K" sort="Millet, Jean K" uniqKey="Millet J" first="Jean K" last="Millet">Jean K. Millet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Daniel, Susan" sort="Daniel, Susan" uniqKey="Daniel S" first="Susan" last="Daniel">Susan Daniel</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Freed, Jack H" sort="Freed, Jack H" uniqKey="Freed J" first="Jack H" last="Freed">Jack H. Freed</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Whittaker, Gary R" sort="Whittaker, Gary R" uniqKey="Whittaker G" first="Gary R" last="Whittaker">Gary R. Whittaker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, United States. Electronic address: gary.whittaker@cornell.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="eISSN">1089-8638</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Calcium (metabolism)</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Membrane Fusion (physiology)</term>
<term>Peptide Fragments (chemistry)</term>
<term>Peptide Fragments (metabolism)</term>
<term>Protein Conformation</term>
<term>SARS Virus (chemistry)</term>
<term>SARS Virus (metabolism)</term>
<term>Sequence Homology</term>
<term>Spike Glycoprotein, Coronavirus (chemistry)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Calcium (métabolisme)</term>
<term>Cellules HEK293</term>
<term>Conformation des protéines</term>
<term>Fragments peptidiques ()</term>
<term>Fragments peptidiques (métabolisme)</term>
<term>Fusion membranaire (physiologie)</term>
<term>Glycoprotéine de spicule des coronavirus ()</term>
<term>Glycoprotéine de spicule des coronavirus (métabolisme)</term>
<term>Humains</term>
<term>Pénétration virale</term>
<term>Similitude de séquences</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Virus du SRAS ()</term>
<term>Virus du SRAS (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peptide Fragments</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium</term>
<term>Peptide Fragments</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Calcium</term>
<term>Fragments peptidiques</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Fusion membranaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Membrane Fusion</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Protein Conformation</term>
<term>Sequence Homology</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HEK293</term>
<term>Conformation des protéines</term>
<term>Fragments peptidiques</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Humains</term>
<term>Pénétration virale</term>
<term>Similitude de séquences</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Virus du SRAS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronaviruses (CoVs) are a major infectious disease threat and include the pathogenic human pathogens of zoonotic origin: severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV). Entry of CoVs into host cells is mediated by the viral spike (S) protein, which is structurally categorized as a class I viral fusion protein, within the same group as influenza virus and HIV. However, S proteins have two distinct cleavage sites that can be activated by a much wider range of proteases. The exact location of the CoV fusion peptide (FP) has been disputed. However, most evidence suggests that the domain immediately downstream of the S2' cleavage site is the FP (amino acids 798-818 SFIEDLLFNKVTLADAGFMKQY for SARS-CoV, FP1). In our previous electron spin resonance spectroscopic studies, the membrane-ordering effect of influenza virus, HIV, and Dengue virus FPs has been consistently observed. In this study, we used this effect as a criterion to identify and characterize the bona fide SARS-CoV FP. Our results indicate that both FP1 and the region immediately downstream (amino acids 816-835 KQYGECLGDINARDLICAQKF, FP2) induce significant membrane ordering. Furthermore, their effects are calcium dependent, which is consistent with in vivo data showing that calcium is required for SARS-CoV S-mediated fusion. Isothermal titration calorimetry showed a direct interaction between calcium cations and both FPs. This Ca
<sup>2+</sup>
-dependency membrane ordering was not observed with influenza FP, indicating that the CoV FP exhibits a mechanistically different behavior. Membrane-ordering effects are greater and penetrate deeper into membranes when FP1 and FP2 act in a concerted manner, suggesting that they form an extended fusion "platform."</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29056462</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>12</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1089-8638</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>429</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2017</Year>
<Month>12</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner.</ArticleTitle>
<Pagination>
<MedlinePgn>3875-3892</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0022-2836(17)30499-0</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jmb.2017.10.017</ELocationID>
<Abstract>
<AbstractText>Coronaviruses (CoVs) are a major infectious disease threat and include the pathogenic human pathogens of zoonotic origin: severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV). Entry of CoVs into host cells is mediated by the viral spike (S) protein, which is structurally categorized as a class I viral fusion protein, within the same group as influenza virus and HIV. However, S proteins have two distinct cleavage sites that can be activated by a much wider range of proteases. The exact location of the CoV fusion peptide (FP) has been disputed. However, most evidence suggests that the domain immediately downstream of the S2' cleavage site is the FP (amino acids 798-818 SFIEDLLFNKVTLADAGFMKQY for SARS-CoV, FP1). In our previous electron spin resonance spectroscopic studies, the membrane-ordering effect of influenza virus, HIV, and Dengue virus FPs has been consistently observed. In this study, we used this effect as a criterion to identify and characterize the bona fide SARS-CoV FP. Our results indicate that both FP1 and the region immediately downstream (amino acids 816-835 KQYGECLGDINARDLICAQKF, FP2) induce significant membrane ordering. Furthermore, their effects are calcium dependent, which is consistent with in vivo data showing that calcium is required for SARS-CoV S-mediated fusion. Isothermal titration calorimetry showed a direct interaction between calcium cations and both FPs. This Ca
<sup>2+</sup>
-dependency membrane ordering was not observed with influenza FP, indicating that the CoV FP exhibits a mechanistically different behavior. Membrane-ordering effects are greater and penetrate deeper into membranes when FP1 and FP2 act in a concerted manner, suggesting that they form an extended fusion "platform."</AbstractText>
<CopyrightInformation>Copyright © 2017 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lai</LastName>
<ForeName>Alex L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Millet</LastName>
<ForeName>Jean K</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Daniel</LastName>
<ForeName>Susan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Freed</LastName>
<ForeName>Jack H</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Whittaker</LastName>
<ForeName>Gary R</ForeName>
<Initials>GR</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, United States. Electronic address: gary.whittaker@cornell.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P41 GM103521</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB003150</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM123779</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI111085</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008561" MajorTopicYN="N">Membrane Fusion</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010446" MajorTopicYN="N">Peptide Fragments</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017385" MajorTopicYN="N">Sequence Homology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">electron spin resonance</Keyword>
<Keyword MajorTopicYN="Y">membrane fusion</Keyword>
<Keyword MajorTopicYN="Y">spike glycoprotein</Keyword>
<Keyword MajorTopicYN="Y">viral entry</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>06</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>10</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>12</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29056462</ArticleId>
<ArticleId IdType="pii">S0022-2836(17)30499-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmb.2017.10.017</ArticleId>
<ArticleId IdType="pmc">PMC5705393</ArticleId>
<ArticleId IdType="mid">NIHMS914389</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2016 Jun 3;291(23):12408-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27036941</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2015 Dec 15;109(12):2523-2536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26682811</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Res. 2017 Jan;27(1):119-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28008928</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2009 Oct 25;393(2):265-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717178</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Jun;79(11):7195-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890958</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2006 Nov 17;127(4):831-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Dec;1778(12):2765-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18721794</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2007 Aug 17;282(33):23946-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17567572</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2006 Apr;13(4):323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16565726</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 2017 Mar 6;27(5):651-660</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28238660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2014 Dec 04;10(12):e1004530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25474548</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2003 Dec;85(6):4023-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2009 Jun 17;96(12):4925-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19527651</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 1993 Nov;65(5):2106-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7507719</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1743-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216768</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Biol. 2001 Aug;8(8):715-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11473264</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 1994 May;66(5):1515-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8061200</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2016 Nov 28;6:37131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27892522</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):1011-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bio Protoc. 2016 Dec 5;6(23):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28018942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26935699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Mar 3;281(9):5760-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407195</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1982;1(2):217-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7188182</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2001 Jul 10;40(27):8126-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11434782</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2016 Feb 25;6:21975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26911344</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2003 Jun 17;42(23):7245-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12795621</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Aug;83(15):7411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439480</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2013 May 3;288(18):12416-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23493401</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2003 Aug;85(2):1278-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885671</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 1999 Aug;77(2):925-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10423437</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2014 Jan 7;106(1):172-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24411249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2000 Dec 15;304(5):953-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11124039</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1999 Nov 9;38(45):15052-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10555988</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2004 Nov 17;126(45):14722-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15535688</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1993 Sep 21;32(37):9714-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8104033</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Sep;74(17):8038-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933713</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):114-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26855426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2003 Jan 14;42(1):96-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12515543</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 1994 Dec;67(6):2326-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7535112</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Feb;1848(2):721-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25475644</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2016 Oct;23(10):899-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27617430</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2002 Jul;83(Pt 7):1535-1545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12075072</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2017 Jul 12;22(1):99-110.e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28704658</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2009 Mar 4;28(5):578-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19165151</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Jul 15;286(28):25291-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21610074</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2017 Apr 10;8:15092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28393837</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2011 Jan 5;100(1):90-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21190660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Soft Matter. 2016 Aug 10;12(32):6716-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27435187</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Q Rev Biophys. 2005 Feb;38(1):1-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16336742</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Aug;15(8):827-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18622390</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11341-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534508</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B10 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000B10 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:29056462
   |texte=   The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:29056462" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021