Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A code for transcription elongation speed.

Identifieur interne : 000A74 ( PubMed/Curation ); précédent : 000A73; suivant : 000A75

A code for transcription elongation speed.

Auteurs : Eyal Cohen [Israël] ; Zohar Zafrir [Israël] ; Tamir Tuller [Israël]

Source :

RBID : pubmed:29165040

Descripteurs français

English descriptors

Abstract

The two major steps of gene expression are transcription and translation. While hundreds of studies regarding the effect of sequence features on the translation elongation process have been published, very few connect sequence features to the transcription elongation rate. We suggest, for the first time, that short transcript sub-sequences have a typical effect on RNA polymerase (RNAP) speed: we show that nucleotide 5-mers tend to have typical RNAP speed (or transcription rate), which is consistent along different parts of genes and among different groups of genes with high correlation. We also demonstrate that relative RNAP speed correlates with mRNA levels of endogenous and heterologous genes. Furthermore, we show that the estimated transcription and translation elongation rates correlate in endogenous genes. Finally, we demonstrate that our results are consistent for different high resolution experimental measurements of RNAP densities. These results suggest for the first time that transcription elongation is partly encoded in the transcript, affected by the codon-usage, and optimized by evolution with a significant effect on gene expression and organismal fitness.

DOI: 10.1080/15476286.2017.1384118
PubMed: 29165040

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29165040

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A code for transcription elongation speed.</title>
<author>
<name sortKey="Cohen, Eyal" sort="Cohen, Eyal" uniqKey="Cohen E" first="Eyal" last="Cohen">Eyal Cohen</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Balavatnick School of Computer Science , Tel Aviv University , Tel Aviv , Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>a Balavatnick School of Computer Science , Tel Aviv University , Tel Aviv </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zafrir, Zohar" sort="Zafrir, Zohar" uniqKey="Zafrir Z" first="Zohar" last="Zafrir">Zohar Zafrir</name>
<affiliation wicri:level="1">
<nlm:affiliation>b Department of Biomedical Engineering , Tel Aviv University , Tel Aviv , Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>b Department of Biomedical Engineering , Tel Aviv University , Tel Aviv </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tuller, Tamir" sort="Tuller, Tamir" uniqKey="Tuller T" first="Tamir" last="Tuller">Tamir Tuller</name>
<affiliation wicri:level="1">
<nlm:affiliation>b Department of Biomedical Engineering , Tel Aviv University , Tel Aviv , Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>b Department of Biomedical Engineering , Tel Aviv University , Tel Aviv </wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29165040</idno>
<idno type="pmid">29165040</idno>
<idno type="doi">10.1080/15476286.2017.1384118</idno>
<idno type="wicri:Area/PubMed/Corpus">000A74</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A74</idno>
<idno type="wicri:Area/PubMed/Curation">000A74</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000A74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A code for transcription elongation speed.</title>
<author>
<name sortKey="Cohen, Eyal" sort="Cohen, Eyal" uniqKey="Cohen E" first="Eyal" last="Cohen">Eyal Cohen</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Balavatnick School of Computer Science , Tel Aviv University , Tel Aviv , Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>a Balavatnick School of Computer Science , Tel Aviv University , Tel Aviv </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zafrir, Zohar" sort="Zafrir, Zohar" uniqKey="Zafrir Z" first="Zohar" last="Zafrir">Zohar Zafrir</name>
<affiliation wicri:level="1">
<nlm:affiliation>b Department of Biomedical Engineering , Tel Aviv University , Tel Aviv , Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>b Department of Biomedical Engineering , Tel Aviv University , Tel Aviv </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tuller, Tamir" sort="Tuller, Tamir" uniqKey="Tuller T" first="Tamir" last="Tuller">Tamir Tuller</name>
<affiliation wicri:level="1">
<nlm:affiliation>b Department of Biomedical Engineering , Tel Aviv University , Tel Aviv , Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>b Department of Biomedical Engineering , Tel Aviv University , Tel Aviv </wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">RNA biology</title>
<idno type="eISSN">1555-8584</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Codon (genetics)</term>
<term>DNA-Directed RNA Polymerases (genetics)</term>
<term>Escherichia coli (genetics)</term>
<term>Genetic Fitness</term>
<term>Peptide Chain Elongation, Translational</term>
<term>RNA, Messenger (genetics)</term>
<term>Ribosomes (genetics)</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>Aptitude génétique</term>
<term>Codon (génétique)</term>
<term>DNA-directed RNA polymerases (génétique)</term>
<term>Escherichia coli (génétique)</term>
<term>Ribosomes (génétique)</term>
<term>Transcription génétique</term>
<term>Élongation de la traduction</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Codon</term>
<term>DNA-Directed RNA Polymerases</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
<term>Ribosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Codon</term>
<term>DNA-directed RNA polymerases</term>
<term>Escherichia coli</term>
<term>Ribosomes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Fitness</term>
<term>Peptide Chain Elongation, Translational</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Aptitude génétique</term>
<term>Transcription génétique</term>
<term>Élongation de la traduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The two major steps of gene expression are transcription and translation. While hundreds of studies regarding the effect of sequence features on the translation elongation process have been published, very few connect sequence features to the transcription elongation rate. We suggest, for the first time, that short transcript sub-sequences have a typical effect on RNA polymerase (RNAP) speed: we show that nucleotide 5-mers tend to have typical RNAP speed (or transcription rate), which is consistent along different parts of genes and among different groups of genes with high correlation. We also demonstrate that relative RNAP speed correlates with mRNA levels of endogenous and heterologous genes. Furthermore, we show that the estimated transcription and translation elongation rates correlate in endogenous genes. Finally, we demonstrate that our results are consistent for different high resolution experimental measurements of RNAP densities. These results suggest for the first time that transcription elongation is partly encoded in the transcript, affected by the codon-usage, and optimized by evolution with a significant effect on gene expression and organismal fitness.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29165040</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1555-8584</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>01</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>RNA biology</Title>
<ISOAbbreviation>RNA Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>A code for transcription elongation speed.</ArticleTitle>
<Pagination>
<MedlinePgn>81-94</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/15476286.2017.1384118</ELocationID>
<Abstract>
<AbstractText>The two major steps of gene expression are transcription and translation. While hundreds of studies regarding the effect of sequence features on the translation elongation process have been published, very few connect sequence features to the transcription elongation rate. We suggest, for the first time, that short transcript sub-sequences have a typical effect on RNA polymerase (RNAP) speed: we show that nucleotide 5-mers tend to have typical RNAP speed (or transcription rate), which is consistent along different parts of genes and among different groups of genes with high correlation. We also demonstrate that relative RNAP speed correlates with mRNA levels of endogenous and heterologous genes. Furthermore, we show that the estimated transcription and translation elongation rates correlate in endogenous genes. Finally, we demonstrate that our results are consistent for different high resolution experimental measurements of RNAP densities. These results suggest for the first time that transcription elongation is partly encoded in the transcript, affected by the codon-usage, and optimized by evolution with a significant effect on gene expression and organismal fitness.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>Eyal</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>a Balavatnick School of Computer Science , Tel Aviv University , Tel Aviv , Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zafrir</LastName>
<ForeName>Zohar</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">0000-0003-1358-7202</Identifier>
<AffiliationInfo>
<Affiliation>b Department of Biomedical Engineering , Tel Aviv University , Tel Aviv , Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tuller</LastName>
<ForeName>Tamir</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>b Department of Biomedical Engineering , Tel Aviv University , Tel Aviv , Israel.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>c Sagol School of Neuroscience , Tel Aviv University , Tel Aviv , Israel.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>11</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>RNA Biol</MedlineTA>
<NlmUniqueID>101235328</NlmUniqueID>
<ISSNLinking>1547-6286</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003062">Codon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.6</RegistryNumber>
<NameOfSubstance UI="D012321">DNA-Directed RNA Polymerases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003062" MajorTopicYN="N">Codon</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012321" MajorTopicYN="N">DNA-Directed RNA Polymerases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056084" MajorTopicYN="N">Genetic Fitness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010441" MajorTopicYN="Y">Peptide Chain Elongation, Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012270" MajorTopicYN="N">Ribosomes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">RNA polymerase</Keyword>
<Keyword MajorTopicYN="Y">Transcription elongation</Keyword>
<Keyword MajorTopicYN="Y">codon-usage bias</Keyword>
<Keyword MajorTopicYN="Y">transcript evolution</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29165040</ArticleId>
<ArticleId IdType="doi">10.1080/15476286.2017.1384118</ArticleId>
<ArticleId IdType="pmc">PMC5785986</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2011 Nov 03;12(11):R110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22050731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8948-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Nov;41(20):9382-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23945943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Aug 22;10:391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19698117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Jun 28;486(7404):496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22722846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Apr 12;446(7137):820-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17361130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Feb 11;15(3):1281-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3547335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Apr 10;324(5924):218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19213877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Dec 13;342(6164):1367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24337295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Biomed Circuits Syst. 2014 Feb;8(1):54-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24681919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Nov 15;5(11):e13984</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21085593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Feb;24(2):374-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17101719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Feb 19;457(7232):1033-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19169243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2014 Mar 26;114(6):3203-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24502198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2010 Aug 24;6:400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Feb 03;10:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jun 26;10(6):e1004407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24968317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Dec 19;322(5909):1845-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Apr 28;33(8):2421-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):227-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20403320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(8):R67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16086849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Mol Biol. 2012 Apr;Chapter 4:Unit 4.14.1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22470065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1981 Sep 25;151(3):389-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6175758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2010 Mar;10(6):1316-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20127684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Sep 24;32(17):5036-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2015;84:165-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26034889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Jul 16;59(2):149-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26186290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jan;77(1 Pt 1):011921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18351890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(2):787-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25550430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e21590</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21738721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 16;320(5878):938-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015;16 Suppl 10:S4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26449467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2015;12(9):972-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26176266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2007 Mar 23;3(3):e57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17381238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2012 Feb 28;8:572</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22373820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2011 Dec;17(12):2063-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22045228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):344-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20403328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(1):13-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25505165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Apr 1;30(7):1575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2014 Mar;15(3):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24514444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Nov;144(3):1309-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8913770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Feb 3;335(6068):552-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Oct 10;579(24):5333-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16194536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2016 Aug;11(8):1455-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27442863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 31;325(5940):626-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19644123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 Aug;10(8):1178-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 20;469(7330):368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Aug 13;6:7972</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26268986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jul;41(Web Server issue):W480-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23748952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Sep 2;467(7311):103-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20811459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2016 Jun;26(6):799-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27197211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Oct 27;3:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25347064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2016 Mar;13(116):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26962028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Feb 22;339(6122):950-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23430654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Aug;42(14):9171-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25056313</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000A74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:29165040
   |texte=   A code for transcription elongation speed.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:29165040" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021