Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of Residues Controlling Restriction versus Enhancing Activities of IFITM Proteins on Entry of Human Coronaviruses.

Identifieur interne : 000A44 ( PubMed/Curation ); précédent : 000A43; suivant : 000A45

Identification of Residues Controlling Restriction versus Enhancing Activities of IFITM Proteins on Entry of Human Coronaviruses.

Auteurs : Xuesen Zhao [République populaire de Chine] ; Mohit Sehgal [États-Unis] ; Zhifei Hou [République populaire de Chine] ; Junjun Cheng [États-Unis] ; Sainan Shu [États-Unis] ; Shuo Wu [États-Unis] ; Fang Guo [États-Unis] ; Sylvain J. Le Marchand [États-Unis] ; Hanxin Lin [Canada] ; Jinhong Chang [États-Unis] ; Ju-Tao Guo [République populaire de Chine]

Source :

RBID : pubmed:29263263

Descripteurs français

English descriptors

Abstract

Interferon-induced transmembrane proteins (IFITMs) are restriction factors that inhibit the infectious entry of many enveloped RNA viruses. However, we demonstrated previously that human IFITM2 and IFITM3 are essential host factors facilitating the entry of human coronavirus (HCoV) OC43. In a continuing effort to decipher the molecular mechanism underlying IFITM differential modulation of HCoV entry, we investigated the roles of structural motifs important for IFITM protein posttranslational modifications, intracellular trafficking, and oligomerization in modulating the entry of five HCoVs. We found that three distinct mutations in IFITM1 or IFITM3 converted the host restriction factors to enhance entry driven by the spike proteins of severe acute respiratory syndrome coronavirus (SARS-CoV) and/or Middle East respiratory syndrome coronavirus (MERS-CoV). First, replacement of IFITM3 tyrosine 20 with either alanine or aspartic acid to mimic unphosphorylated or phosphorylated IFITM3 reduced its activity to inhibit the entry of HCoV-NL63 and -229E but enhanced the entry of SARS-CoV and MERS-CoV. Second, replacement of IFITM3 tyrosine 99 with either alanine or aspartic acid reduced its activity to inhibit the entry of HCoV-NL63 and SARS-CoV but promoted the entry of MERS-CoV. Third, deletion of the carboxyl-terminal 12 amino acid residues from IFITM1 enhanced the entry of MERS-CoV and HCoV-OC43. These findings suggest that these residues and structural motifs of IFITM proteins are key determinants for modulating the entry of HCoVs, most likely through interaction with viral and/or host cellular components at the site of viral entry to modulate the fusion of viral envelope and cellular membranes.IMPORTANCE The differential effects of IFITM proteins on the entry of HCoVs that utilize divergent entry pathways and membrane fusion mechanisms even when using the same receptor make the HCoVs a valuable system for comparative investigation of the molecular mechanisms underlying IFITM restriction or promotion of virus entry into host cells. Identification of three distinct mutations that converted IFITM1 or IFITM3 from inhibitors to enhancers of MERS-CoV or SARS-CoV spike protein-mediated entry revealed key structural motifs or residues determining the biological activities of IFITM proteins. These findings have thus paved the way for further identification of viral and host factors that interact with those structural motifs of IFITM proteins to differentially modulate the infectious entry of HCoVs.

DOI: 10.1128/JVI.01535-17
PubMed: 29263263

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29263263

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of Residues Controlling Restriction versus Enhancing Activities of IFITM Proteins on Entry of Human Coronaviruses.</title>
<author>
<name sortKey="Zhao, Xuesen" sort="Zhao, Xuesen" uniqKey="Zhao X" first="Xuesen" last="Zhao">Xuesen Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Ditan Hospital, Capital Medical University, Beijing, China zhaoxuesen@ccmu.edu.cn ju-tao.guo@bblumberg.org.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>Beijing Ditan Hospital, Capital Medical University, Beijing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sehgal, Mohit" sort="Sehgal, Mohit" uniqKey="Sehgal M" first="Mohit" last="Sehgal">Mohit Sehgal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hou, Zhifei" sort="Hou, Zhifei" uniqKey="Hou Z" first="Zhifei" last="Hou">Zhifei Hou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Ditan Hospital, Capital Medical University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Ditan Hospital, Capital Medical University, Beijing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Junjun" sort="Cheng, Junjun" uniqKey="Cheng J" first="Junjun" last="Cheng">Junjun Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shu, Sainan" sort="Shu, Sainan" uniqKey="Shu S" first="Sainan" last="Shu">Sainan Shu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wu, Shuo" sort="Wu, Shuo" uniqKey="Wu S" first="Shuo" last="Wu">Shuo Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Guo, Fang" sort="Guo, Fang" uniqKey="Guo F" first="Fang" last="Guo">Fang Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Le Marchand, Sylvain J" sort="Le Marchand, Sylvain J" uniqKey="Le Marchand S" first="Sylvain J" last="Le Marchand">Sylvain J. Le Marchand</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Drexel University, Philadelphia, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lin, Hanxin" sort="Lin, Hanxin" uniqKey="Lin H" first="Hanxin" last="Lin">Hanxin Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Pathology and Laboratory Medicine, Western University, London, Ontario</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chang, Jinhong" sort="Chang, Jinhong" uniqKey="Chang J" first="Jinhong" last="Chang">Jinhong Chang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Guo, Ju Tao" sort="Guo, Ju Tao" uniqKey="Guo J" first="Ju-Tao" last="Guo">Ju-Tao Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA zhaoxuesen@ccmu.edu.cn ju-tao.guo@bblumberg.org.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29263263</idno>
<idno type="pmid">29263263</idno>
<idno type="doi">10.1128/JVI.01535-17</idno>
<idno type="wicri:Area/PubMed/Corpus">000A44</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A44</idno>
<idno type="wicri:Area/PubMed/Curation">000A44</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000A44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of Residues Controlling Restriction versus Enhancing Activities of IFITM Proteins on Entry of Human Coronaviruses.</title>
<author>
<name sortKey="Zhao, Xuesen" sort="Zhao, Xuesen" uniqKey="Zhao X" first="Xuesen" last="Zhao">Xuesen Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Ditan Hospital, Capital Medical University, Beijing, China zhaoxuesen@ccmu.edu.cn ju-tao.guo@bblumberg.org.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>Beijing Ditan Hospital, Capital Medical University, Beijing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sehgal, Mohit" sort="Sehgal, Mohit" uniqKey="Sehgal M" first="Mohit" last="Sehgal">Mohit Sehgal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hou, Zhifei" sort="Hou, Zhifei" uniqKey="Hou Z" first="Zhifei" last="Hou">Zhifei Hou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Ditan Hospital, Capital Medical University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Ditan Hospital, Capital Medical University, Beijing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Junjun" sort="Cheng, Junjun" uniqKey="Cheng J" first="Junjun" last="Cheng">Junjun Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shu, Sainan" sort="Shu, Sainan" uniqKey="Shu S" first="Sainan" last="Shu">Sainan Shu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wu, Shuo" sort="Wu, Shuo" uniqKey="Wu S" first="Shuo" last="Wu">Shuo Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Guo, Fang" sort="Guo, Fang" uniqKey="Guo F" first="Fang" last="Guo">Fang Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Le Marchand, Sylvain J" sort="Le Marchand, Sylvain J" uniqKey="Le Marchand S" first="Sylvain J" last="Le Marchand">Sylvain J. Le Marchand</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Drexel University, Philadelphia, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lin, Hanxin" sort="Lin, Hanxin" uniqKey="Lin H" first="Hanxin" last="Lin">Hanxin Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Pathology and Laboratory Medicine, Western University, London, Ontario</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chang, Jinhong" sort="Chang, Jinhong" uniqKey="Chang J" first="Jinhong" last="Chang">Jinhong Chang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Guo, Ju Tao" sort="Guo, Ju Tao" uniqKey="Guo J" first="Ju-Tao" last="Guo">Ju-Tao Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA zhaoxuesen@ccmu.edu.cn ju-tao.guo@bblumberg.org.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Substitution</term>
<term>Antigens, Differentiation (genetics)</term>
<term>Antigens, Differentiation (metabolism)</term>
<term>Cell Line, Tumor</term>
<term>Coronavirus (genetics)</term>
<term>Coronavirus (metabolism)</term>
<term>Humans</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Mutation, Missense</term>
<term>Protein Multimerization</term>
<term>RNA-Binding Proteins (genetics)</term>
<term>RNA-Binding Proteins (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus (genetics)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antigènes de différenciation (génétique)</term>
<term>Antigènes de différenciation (métabolisme)</term>
<term>Coronavirus (génétique)</term>
<term>Coronavirus (métabolisme)</term>
<term>Glycoprotéine de spicule des coronavirus (génétique)</term>
<term>Glycoprotéine de spicule des coronavirus (métabolisme)</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Motifs d'acides aminés</term>
<term>Multimérisation de protéines</term>
<term>Mutation faux-sens</term>
<term>Protéines de liaison à l'ARN (génétique)</term>
<term>Protéines de liaison à l'ARN (métabolisme)</term>
<term>Protéines membranaires (génétique)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Pénétration virale</term>
<term>Substitution d'acide aminé</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Antigens, Differentiation</term>
<term>Membrane Proteins</term>
<term>RNA-Binding Proteins</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antigens, Differentiation</term>
<term>Membrane Proteins</term>
<term>RNA-Binding Proteins</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Antigènes de différenciation</term>
<term>Coronavirus</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines membranaires</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antigènes de différenciation</term>
<term>Coronavirus</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines membranaires</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Substitution</term>
<term>Cell Line, Tumor</term>
<term>Humans</term>
<term>Mutation, Missense</term>
<term>Protein Multimerization</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Motifs d'acides aminés</term>
<term>Multimérisation de protéines</term>
<term>Mutation faux-sens</term>
<term>Pénétration virale</term>
<term>Substitution d'acide aminé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Interferon-induced transmembrane proteins (IFITMs) are restriction factors that inhibit the infectious entry of many enveloped RNA viruses. However, we demonstrated previously that human IFITM2 and IFITM3 are essential host factors facilitating the entry of human coronavirus (HCoV) OC43. In a continuing effort to decipher the molecular mechanism underlying IFITM differential modulation of HCoV entry, we investigated the roles of structural motifs important for IFITM protein posttranslational modifications, intracellular trafficking, and oligomerization in modulating the entry of five HCoVs. We found that three distinct mutations in IFITM1 or IFITM3 converted the host restriction factors to enhance entry driven by the spike proteins of severe acute respiratory syndrome coronavirus (SARS-CoV) and/or Middle East respiratory syndrome coronavirus (MERS-CoV). First, replacement of IFITM3 tyrosine 20 with either alanine or aspartic acid to mimic unphosphorylated or phosphorylated IFITM3 reduced its activity to inhibit the entry of HCoV-NL63 and -229E but enhanced the entry of SARS-CoV and MERS-CoV. Second, replacement of IFITM3 tyrosine 99 with either alanine or aspartic acid reduced its activity to inhibit the entry of HCoV-NL63 and SARS-CoV but promoted the entry of MERS-CoV. Third, deletion of the carboxyl-terminal 12 amino acid residues from IFITM1 enhanced the entry of MERS-CoV and HCoV-OC43. These findings suggest that these residues and structural motifs of IFITM proteins are key determinants for modulating the entry of HCoVs, most likely through interaction with viral and/or host cellular components at the site of viral entry to modulate the fusion of viral envelope and cellular membranes.
<b>IMPORTANCE</b>
The differential effects of IFITM proteins on the entry of HCoVs that utilize divergent entry pathways and membrane fusion mechanisms even when using the same receptor make the HCoVs a valuable system for comparative investigation of the molecular mechanisms underlying IFITM restriction or promotion of virus entry into host cells. Identification of three distinct mutations that converted IFITM1 or IFITM3 from inhibitors to enhancers of MERS-CoV or SARS-CoV spike protein-mediated entry revealed key structural motifs or residues determining the biological activities of IFITM proteins. These findings have thus paved the way for further identification of viral and host factors that interact with those structural motifs of IFITM proteins to differentially modulate the infectious entry of HCoVs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29263263</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>04</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>92</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2018</Year>
<Month>03</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of Residues Controlling Restriction versus Enhancing Activities of IFITM Proteins on Entry of Human Coronaviruses.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01535-17</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01535-17</ELocationID>
<Abstract>
<AbstractText>Interferon-induced transmembrane proteins (IFITMs) are restriction factors that inhibit the infectious entry of many enveloped RNA viruses. However, we demonstrated previously that human IFITM2 and IFITM3 are essential host factors facilitating the entry of human coronavirus (HCoV) OC43. In a continuing effort to decipher the molecular mechanism underlying IFITM differential modulation of HCoV entry, we investigated the roles of structural motifs important for IFITM protein posttranslational modifications, intracellular trafficking, and oligomerization in modulating the entry of five HCoVs. We found that three distinct mutations in IFITM1 or IFITM3 converted the host restriction factors to enhance entry driven by the spike proteins of severe acute respiratory syndrome coronavirus (SARS-CoV) and/or Middle East respiratory syndrome coronavirus (MERS-CoV). First, replacement of IFITM3 tyrosine 20 with either alanine or aspartic acid to mimic unphosphorylated or phosphorylated IFITM3 reduced its activity to inhibit the entry of HCoV-NL63 and -229E but enhanced the entry of SARS-CoV and MERS-CoV. Second, replacement of IFITM3 tyrosine 99 with either alanine or aspartic acid reduced its activity to inhibit the entry of HCoV-NL63 and SARS-CoV but promoted the entry of MERS-CoV. Third, deletion of the carboxyl-terminal 12 amino acid residues from IFITM1 enhanced the entry of MERS-CoV and HCoV-OC43. These findings suggest that these residues and structural motifs of IFITM proteins are key determinants for modulating the entry of HCoVs, most likely through interaction with viral and/or host cellular components at the site of viral entry to modulate the fusion of viral envelope and cellular membranes.
<b>IMPORTANCE</b>
The differential effects of IFITM proteins on the entry of HCoVs that utilize divergent entry pathways and membrane fusion mechanisms even when using the same receptor make the HCoVs a valuable system for comparative investigation of the molecular mechanisms underlying IFITM restriction or promotion of virus entry into host cells. Identification of three distinct mutations that converted IFITM1 or IFITM3 from inhibitors to enhancers of MERS-CoV or SARS-CoV spike protein-mediated entry revealed key structural motifs or residues determining the biological activities of IFITM proteins. These findings have thus paved the way for further identification of viral and host factors that interact with those structural motifs of IFITM proteins to differentially modulate the infectious entry of HCoVs.</AbstractText>
<CopyrightInformation>Copyright © 2018 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Xuesen</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Beijing Ditan Hospital, Capital Medical University, Beijing, China zhaoxuesen@ccmu.edu.cn ju-tao.guo@bblumberg.org.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sehgal</LastName>
<ForeName>Mohit</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Zhifei</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Beijing Ditan Hospital, Capital Medical University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Junjun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shu</LastName>
<ForeName>Sainan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Shuo</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Fang</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Le Marchand</LastName>
<ForeName>Sylvain J</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Hanxin</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Jinhong</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Ju-Tao</ForeName>
<Initials>JT</Initials>
<AffiliationInfo>
<Affiliation>Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA zhaoxuesen@ccmu.edu.cn ju-tao.guo@bblumberg.org.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI113267</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000943">Antigens, Differentiation</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C080081">IFITM2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C080082">IFITM3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C062010">leu-13 antigen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000943" MajorTopicYN="N">Antigens, Differentiation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020125" MajorTopicYN="Y">Mutation, Missense</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="Y">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">IFITM</Keyword>
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">viral entry</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>09</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29263263</ArticleId>
<ArticleId IdType="pii">JVI.01535-17</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01535-17</ArticleId>
<ArticleId IdType="pmc">PMC5827390</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Microbiol. 2014 Jul;16(7):1080-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24521078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Aug 26;90(18):8212-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27384652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Mar;89(6):3049-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25552713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2012 Aug;20(8):392-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22633075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2012 Dec;96(3):405-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23072881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367 (19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2014 Sep 26;6(9):3683-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25256397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Nov;69(11):6705-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7474080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Virol. 2014 Nov 1;1:261-283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25599080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Aug;87(15):8451-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23720721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Nov;88(22):13221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25187545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(11):6150-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jul;87(14):7837-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23658454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(4):1665-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Sep 12;90(19):8780-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27440901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2010 Aug;6(8):610-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20601941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Aug 11;11(8):e1005095</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26263374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Dec;11(12):836-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24217413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2013 Feb;57(2):461-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22996292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Apr 25;289(17):11986-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24627473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Apr 03;10(4):e1004048</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24699674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Microbiol. 2014;9(10):1151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25405885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 May 12;292(19):7817-7827</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28341742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 May 12;91(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28356532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Sep;8(9):e1002909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22969429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jan 06;7(1):e1001258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21253575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Jan;9(1):e1003124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23358889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2016 Nov;17 (11):1657-1671</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27601221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 04;10(3):e0118794</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25738301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):7112-7117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28630320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Oct;100(1):286-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24012996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Nov 28;90(24):11145-11156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27707917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Mar 25;484(7395):519-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22446628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2013 Jan;13(1):46-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23237964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):769-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24367104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Dec 24;139(7):1243-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jun 1;287(23):19631-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22511783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 May 6;111(18):6756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 Jun 14;15(11):2323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27268505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Sep;87(17):9923-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23804635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Feb 13;290(7):4248-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25527505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 Oct 1;212 Suppl 2:S210-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26034199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2012 Feb;53(2):135-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22188723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Jun;98(3):432-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23578725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Dec;15(12 ):5420-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15456905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2016 Oct 12;20(4):429-442</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27640936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2017 Apr 3;214(4):919-929</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28246125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Jul;14 (7):2935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2013 Dec 13;425(24):4937-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24076421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jun 14;288(24):17261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23649619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2011 Sep;160(1-2):283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21798295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Oct 6;13(1):145-156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26387945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Feb 1;206(2):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7531918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2015 Jan;59(1):206-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25348530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2013 Feb;17(1):27-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23332315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Aug;84(16):8332-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2013 Apr 17;13(4):452-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23601107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:1418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23361009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Mar;85(5):2126-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 May 14;9(5):e96579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24827144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2013 Oct 16;14(4):374-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24139396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Dec;86(24):13697-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23055554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Dec;69(4):635-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):12646-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2010 Aug;48(8):2940-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20554810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2013 Nov 27;5(4):895-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24268777</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000A44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:29263263
   |texte=   Identification of Residues Controlling Restriction versus Enhancing Activities of IFITM Proteins on Entry of Human Coronaviruses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:29263263" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021