Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The influence of the N-terminal region proximal to the core domain on the assembly and chaperone activity of αB-crystallin.

Identifieur interne : 000976 ( PubMed/Curation ); précédent : 000975; suivant : 000977

The influence of the N-terminal region proximal to the core domain on the assembly and chaperone activity of αB-crystallin.

Auteurs : Blagojce Jovcevski [Australie] ; J. Andrew Aquilina [Australie] ; Justin L P. Benesch [Royaume-Uni] ; Heath Ecroyd [Australie]

Source :

RBID : pubmed:29520626

Descripteurs français

English descriptors

Abstract

αB-Crystallin (HSPB5) is a small heat-shock protein that is composed of dimers that then assemble into a polydisperse ensemble of oligomers. Oligomerisation is mediated by heterologous interactions between the C-terminal tail of one dimer and the core "α-crystallin" domain of another and stabilised by interactions made by the N-terminal region. Comparatively little is known about the latter contribution, but previous studies have suggested that residues in the region 54-60 form contacts that stabilise the assembly. We have generated mutations in this region (P58A, S59A, S59K, R56S/S59R and an inversion of residues 54-60) to examine their impact on oligomerisation and chaperone activity in vitro. By using native mass spectrometry, we found that all the αB-crystallin mutants were assembly competent, populating similar oligomeric distributions to wild-type, ranging from 16-mers to 30-mers. However, circular dichroism spectroscopy, intrinsic tryptophan and bis-ANS fluorescence studies demonstrated that the secondary structure differs to wild type, the 54-60 inversion mutation having the greatest impact. All the mutants exhibited a dramatic decrease in exposed hydrophobicity. We also found that the mutants in general were equally active as the wild-type protein in inhibiting the amorphous aggregation of insulin and seeded amyloid fibrillation of α-synuclein in vitro, except for the 54-60 inversion mutant, which was significantly less effective at inhibiting insulin aggregation. Our data indicate that alterations in the part of the N-terminal region proximal to the core domain do not drastically affect the oligomerisation of αB-crystallin, reinforcing the robustness of αB-crystallin in functioning as a molecular chaperone.

DOI: 10.1007/s12192-018-0889-y
PubMed: 29520626

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29520626

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The influence of the N-terminal region proximal to the core domain on the assembly and chaperone activity of αB-crystallin.</title>
<author>
<name sortKey="Jovcevski, Blagojce" sort="Jovcevski, Blagojce" uniqKey="Jovcevski B" first="Blagojce" last="Jovcevski">Blagojce Jovcevski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Andrew Aquilina, J" sort="Andrew Aquilina, J" uniqKey="Andrew Aquilina J" first="J" last="Andrew Aquilina">J. Andrew Aquilina</name>
<affiliation wicri:level="1">
<nlm:affiliation>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Benesch, Justin L P" sort="Benesch, Justin L P" uniqKey="Benesch J" first="Justin L P" last="Benesch">Justin L P. Benesch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ecroyd, Heath" sort="Ecroyd, Heath" uniqKey="Ecroyd H" first="Heath" last="Ecroyd">Heath Ecroyd</name>
<affiliation wicri:level="1">
<nlm:affiliation>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia. heathe@uow.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29520626</idno>
<idno type="pmid">29520626</idno>
<idno type="doi">10.1007/s12192-018-0889-y</idno>
<idno type="wicri:Area/PubMed/Corpus">000976</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000976</idno>
<idno type="wicri:Area/PubMed/Curation">000976</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000976</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The influence of the N-terminal region proximal to the core domain on the assembly and chaperone activity of αB-crystallin.</title>
<author>
<name sortKey="Jovcevski, Blagojce" sort="Jovcevski, Blagojce" uniqKey="Jovcevski B" first="Blagojce" last="Jovcevski">Blagojce Jovcevski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Andrew Aquilina, J" sort="Andrew Aquilina, J" uniqKey="Andrew Aquilina J" first="J" last="Andrew Aquilina">J. Andrew Aquilina</name>
<affiliation wicri:level="1">
<nlm:affiliation>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Benesch, Justin L P" sort="Benesch, Justin L P" uniqKey="Benesch J" first="Justin L P" last="Benesch">Justin L P. Benesch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ecroyd, Heath" sort="Ecroyd, Heath" uniqKey="Ecroyd H" first="Heath" last="Ecroyd">Heath Ecroyd</name>
<affiliation wicri:level="1">
<nlm:affiliation>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia. heathe@uow.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell stress & chaperones</title>
<idno type="eISSN">1466-1268</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Humans</term>
<term>Mutation</term>
<term>Protein Domains</term>
<term>Protein Multimerization</term>
<term>Protein Structure, Secondary</term>
<term>alpha-Crystallin B Chain (chemistry)</term>
<term>alpha-Crystallin B Chain (genetics)</term>
<term>alpha-Crystallin B Chain (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chaîne B de la cristalline alpha ()</term>
<term>Chaîne B de la cristalline alpha (génétique)</term>
<term>Chaîne B de la cristalline alpha (métabolisme)</term>
<term>Domaines protéiques</term>
<term>Humains</term>
<term>Multimérisation de protéines</term>
<term>Mutation</term>
<term>Structure secondaire des protéines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>alpha-Crystallin B Chain</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>alpha-Crystallin B Chain</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>alpha-Crystallin B Chain</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chaîne B de la cristalline alpha</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chaîne B de la cristalline alpha</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Mutation</term>
<term>Protein Domains</term>
<term>Protein Multimerization</term>
<term>Protein Structure, Secondary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chaîne B de la cristalline alpha</term>
<term>Domaines protéiques</term>
<term>Humains</term>
<term>Multimérisation de protéines</term>
<term>Mutation</term>
<term>Structure secondaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">αB-Crystallin (HSPB5) is a small heat-shock protein that is composed of dimers that then assemble into a polydisperse ensemble of oligomers. Oligomerisation is mediated by heterologous interactions between the C-terminal tail of one dimer and the core "α-crystallin" domain of another and stabilised by interactions made by the N-terminal region. Comparatively little is known about the latter contribution, but previous studies have suggested that residues in the region 54-60 form contacts that stabilise the assembly. We have generated mutations in this region (P58A, S59A, S59K, R56S/S59R and an inversion of residues 54-60) to examine their impact on oligomerisation and chaperone activity in vitro. By using native mass spectrometry, we found that all the αB-crystallin mutants were assembly competent, populating similar oligomeric distributions to wild-type, ranging from 16-mers to 30-mers. However, circular dichroism spectroscopy, intrinsic tryptophan and bis-ANS fluorescence studies demonstrated that the secondary structure differs to wild type, the 54-60 inversion mutation having the greatest impact. All the mutants exhibited a dramatic decrease in exposed hydrophobicity. We also found that the mutants in general were equally active as the wild-type protein in inhibiting the amorphous aggregation of insulin and seeded amyloid fibrillation of α-synuclein in vitro, except for the 54-60 inversion mutant, which was significantly less effective at inhibiting insulin aggregation. Our data indicate that alterations in the part of the N-terminal region proximal to the core domain do not drastically affect the oligomerisation of αB-crystallin, reinforcing the robustness of αB-crystallin in functioning as a molecular chaperone.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29520626</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>05</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1466-1268</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2018</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Cell stress & chaperones</Title>
<ISOAbbreviation>Cell Stress Chaperones</ISOAbbreviation>
</Journal>
<ArticleTitle>The influence of the N-terminal region proximal to the core domain on the assembly and chaperone activity of αB-crystallin.</ArticleTitle>
<Pagination>
<MedlinePgn>827-836</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12192-018-0889-y</ELocationID>
<Abstract>
<AbstractText>αB-Crystallin (HSPB5) is a small heat-shock protein that is composed of dimers that then assemble into a polydisperse ensemble of oligomers. Oligomerisation is mediated by heterologous interactions between the C-terminal tail of one dimer and the core "α-crystallin" domain of another and stabilised by interactions made by the N-terminal region. Comparatively little is known about the latter contribution, but previous studies have suggested that residues in the region 54-60 form contacts that stabilise the assembly. We have generated mutations in this region (P58A, S59A, S59K, R56S/S59R and an inversion of residues 54-60) to examine their impact on oligomerisation and chaperone activity in vitro. By using native mass spectrometry, we found that all the αB-crystallin mutants were assembly competent, populating similar oligomeric distributions to wild-type, ranging from 16-mers to 30-mers. However, circular dichroism spectroscopy, intrinsic tryptophan and bis-ANS fluorescence studies demonstrated that the secondary structure differs to wild type, the 54-60 inversion mutation having the greatest impact. All the mutants exhibited a dramatic decrease in exposed hydrophobicity. We also found that the mutants in general were equally active as the wild-type protein in inhibiting the amorphous aggregation of insulin and seeded amyloid fibrillation of α-synuclein in vitro, except for the 54-60 inversion mutant, which was significantly less effective at inhibiting insulin aggregation. Our data indicate that alterations in the part of the N-terminal region proximal to the core domain do not drastically affect the oligomerisation of αB-crystallin, reinforcing the robustness of αB-crystallin in functioning as a molecular chaperone.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jovcevski</LastName>
<ForeName>Blagojce</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-7999-1385</Identifier>
<AffiliationInfo>
<Affiliation>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Andrew Aquilina</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Benesch</LastName>
<ForeName>Justin L P</ForeName>
<Initials>JLP</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ecroyd</LastName>
<ForeName>Heath</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia. heathe@uow.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Cell Stress Chaperones</MedlineTA>
<NlmUniqueID>9610925</NlmUniqueID>
<ISSNLinking>1355-8145</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C059215">CRYAB protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D038203">alpha-Crystallin B Chain</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038203" MajorTopicYN="N">alpha-Crystallin B Chain</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Amyloid fibrils</Keyword>
<Keyword MajorTopicYN="Y">HSPB5</Keyword>
<Keyword MajorTopicYN="Y">Molecular chaperone</Keyword>
<Keyword MajorTopicYN="Y">Native mass spectrometry</Keyword>
<Keyword MajorTopicYN="Y">Protein aggregation</Keyword>
<Keyword MajorTopicYN="Y">Proteostasis</Keyword>
<Keyword MajorTopicYN="Y">Small heat-shock protein</Keyword>
<Keyword MajorTopicYN="Y">αB-crystallin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>01</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>02</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29520626</ArticleId>
<ArticleId IdType="doi">10.1007/s12192-018-0889-y</ArticleId>
<ArticleId IdType="pii">10.1007/s12192-018-0889-y</ArticleId>
<ArticleId IdType="pmc">PMC6111084</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 1998;290:365-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9534176</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Jan;1860(1 Pt B):149-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26116912</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Feb 27;315(1):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15013433</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2017 Oct 13;429(20):3018-3030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28918091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 Mar 25;368(1617):20110405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23530258</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Jan;66(1):62-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18810322</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Sep;17(9):1037-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802487</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2011 Oct 21;413(2):297-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21839090</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Biol. 2001 Dec;8(12):1025-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11702068</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2011 Apr;174(1):92-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21195185</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Neurochem. 2016 May;137(4):489-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26872075</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2011 Dec 7;19(12):1855-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22153508</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Stress Chaperones. 2013 Jan;18(1):75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22851138</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 2012 Dec 15;448(3):343-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23005341</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2012 Jun 26;51(25):5105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22670769</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014 Aug 26;9(8):e105892</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25157403</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2011 Jul 20;475(7356):324-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21776078</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2017 Jun 16;292(24):9944-9957</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28487364</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2015 Nov 3;23(11):2066-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26439766</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1562-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24711386</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Prog Biophys Mol Biol. 2014 Jul;115(1):3-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24576798</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Prog Biophys Mol Biol. 2014 Jul;115(1):11-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24674783</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 2015 Feb 19;22(2):186-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25699602</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Dec 29;281(52):40420-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079234</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2009 Feb 6;385(5):1481-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19041879</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Biol Macromol. 1998 May-Jun;22(3-4):211-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9650075</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jul 2;279(27):28675-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15117944</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10611-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12947045</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Mol Med. 2009 Sep;9(7):887-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19860667</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2008 Oct 17;283(42):28513-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18713743</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Biochem Cell Biol. 2012 Oct;44(10):1687-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22405853</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Vis. 2006 May 24;12:581-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760894</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2012 Dec 12;31(24):4587-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23188086</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2016 Oct 21;291(43):22618-22629</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27587396</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2011 Oct 21;413(2):310-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21839749</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2008 Feb 15;319(5865):916-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18276881</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21464278</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2012 Feb 14;51(6):1257-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22264079</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2015 Nov;22(11):898-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26458046</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Mol Life Sci. 2015 Feb;72(3):429-451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25352169</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2002 Sep 13;322(2):383-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12217698</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2010 May;19(5):1031-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20440841</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20491-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22143763</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS J. 2008 Mar;275(5):935-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18218039</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2013 Apr 17;587(8):1073-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23340341</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 May 27;111(21):7671-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24817693</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3780-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043785</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Parkinsons Dis. 2011;1(4):359-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23933657</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2006 Aug 15;45(32):9878-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16893188</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2013 Feb 5;21(2):220-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23273429</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2009 May 12;48(18):3828-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19323523</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15604-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717454</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Mol Life Sci. 2015 Nov;72(21):4127-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26210153</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2013 May 10;288(19):13602-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532854</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000976 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000976 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:29520626
   |texte=   The influence of the N-terminal region proximal to the core domain on the assembly and chaperone activity of αB-crystallin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:29520626" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021