Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Petrophilic, Fe(III) Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems.

Identifieur interne : 000953 ( PubMed/Curation ); précédent : 000952; suivant : 000954

Petrophilic, Fe(III) Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems.

Auteurs : Krishnaveni Venkidusamy [Australie] ; Ananda Rao Hari [Qatar] ; Mallavarapu Megharaj [Australie]

Source :

RBID : pubmed:29593662

Abstract

Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS) Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain, Citrobacter sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III) reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III) supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density) of 212 ± 3 and 359 ± mA/m2 with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l-1 azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h). Current generation and biodegradation capabilities of strain KVM11 were examined using an initial concentration of 800 mg l-1 of diesel range hydrocarbons (C9-C36) in MERS (maximum currentdensity 50.64 ± 7 mA/m2; power density 4.08 ± 2 mW/m2, 1000 ω, hydrocarbon removal 60.14 ± 0.7%). Such observations reveal the potential of electroactive biofilms in the simultaneous remediation of hydrocarbon contaminated environments with generation of energy.

DOI: 10.3389/fmicb.2018.00349
PubMed: 29593662

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29593662

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Petrophilic, Fe(III) Reducing Exoelectrogen
<i>Citrobacter</i>
sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems.</title>
<author>
<name sortKey="Venkidusamy, Krishnaveni" sort="Venkidusamy, Krishnaveni" uniqKey="Venkidusamy K" first="Krishnaveni" last="Venkidusamy">Krishnaveni Venkidusamy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hari, Ananda Rao" sort="Hari, Ananda Rao" uniqKey="Hari A" first="Ananda Rao" last="Hari">Ananda Rao Hari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Sustainable Development, Hamad Bin Khalifa University, Education City, Doha, Qatar.</nlm:affiliation>
<country xml:lang="fr">Qatar</country>
<wicri:regionArea>Division of Sustainable Development, Hamad Bin Khalifa University, Education City, Doha</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Megharaj, Mallavarapu" sort="Megharaj, Mallavarapu" uniqKey="Megharaj M" first="Mallavarapu" last="Megharaj">Mallavarapu Megharaj</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29593662</idno>
<idno type="pmid">29593662</idno>
<idno type="doi">10.3389/fmicb.2018.00349</idno>
<idno type="wicri:Area/PubMed/Corpus">000953</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000953</idno>
<idno type="wicri:Area/PubMed/Curation">000953</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000953</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Petrophilic, Fe(III) Reducing Exoelectrogen
<i>Citrobacter</i>
sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems.</title>
<author>
<name sortKey="Venkidusamy, Krishnaveni" sort="Venkidusamy, Krishnaveni" uniqKey="Venkidusamy K" first="Krishnaveni" last="Venkidusamy">Krishnaveni Venkidusamy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hari, Ananda Rao" sort="Hari, Ananda Rao" uniqKey="Hari A" first="Ananda Rao" last="Hari">Ananda Rao Hari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Sustainable Development, Hamad Bin Khalifa University, Education City, Doha, Qatar.</nlm:affiliation>
<country xml:lang="fr">Qatar</country>
<wicri:regionArea>Division of Sustainable Development, Hamad Bin Khalifa University, Education City, Doha</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Megharaj, Mallavarapu" sort="Megharaj, Mallavarapu" uniqKey="Megharaj M" first="Mallavarapu" last="Megharaj">Mallavarapu Megharaj</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS) Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain,
<i>Citrobacter</i>
sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III) reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III) supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density) of 212 ± 3 and 359 ± mA/m
<sup>2</sup>
with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l
<sup>-1</sup>
azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h). Current generation and biodegradation capabilities of strain KVM11 were examined using an initial concentration of 800 mg l
<sup>-1</sup>
of diesel range hydrocarbons (C9-C36) in MERS (maximum currentdensity 50.64 ± 7 mA/m
<sup>2</sup>
; power density 4.08 ± 2 mW/m
<sup>2</sup>
, 1000 ω, hydrocarbon removal 60.14 ± 0.7%). Such observations reveal the potential of electroactive biofilms in the simultaneous remediation of hydrocarbon contaminated environments with generation of energy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29593662</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Petrophilic, Fe(III) Reducing Exoelectrogen
<i>Citrobacter</i>
sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems.</ArticleTitle>
<Pagination>
<MedlinePgn>349</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2018.00349</ELocationID>
<Abstract>
<AbstractText>Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS) Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain,
<i>Citrobacter</i>
sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III) reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III) supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density) of 212 ± 3 and 359 ± mA/m
<sup>2</sup>
with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l
<sup>-1</sup>
azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h). Current generation and biodegradation capabilities of strain KVM11 were examined using an initial concentration of 800 mg l
<sup>-1</sup>
of diesel range hydrocarbons (C9-C36) in MERS (maximum currentdensity 50.64 ± 7 mA/m
<sup>2</sup>
; power density 4.08 ± 2 mW/m
<sup>2</sup>
, 1000 ω, hydrocarbon removal 60.14 ± 0.7%). Such observations reveal the potential of electroactive biofilms in the simultaneous remediation of hydrocarbon contaminated environments with generation of energy.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Venkidusamy</LastName>
<ForeName>Krishnaveni</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hari</LastName>
<ForeName>Ananda Rao</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Division of Sustainable Development, Hamad Bin Khalifa University, Education City, Doha, Qatar.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Megharaj</LastName>
<ForeName>Mallavarapu</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Citrobacter sp. KVM11</Keyword>
<Keyword MajorTopicYN="N">electroactive biofilms</Keyword>
<Keyword MajorTopicYN="N">extracellular electron flow</Keyword>
<Keyword MajorTopicYN="N">hydrocarbonoclastic potential</Keyword>
<Keyword MajorTopicYN="N">iron reducing</Keyword>
<Keyword MajorTopicYN="N">microbial electrochemical remediation systems</Keyword>
<Keyword MajorTopicYN="N">petrophilic</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29593662</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2018.00349</ArticleId>
<ArticleId IdType="pmc">PMC5858583</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol Adv. 2013 Dec;31(8):1796-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24113213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2012 Mar 30;209-210:516-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22277341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1999 Oct;49 Pt 4:1615-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10555343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2006 Dec;14(12):512-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17049240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2013 May 7;47(9):4934-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23544360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Oct;8(10):1805-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16958761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2010 Mar;60(Pt 3):686-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 2008 Sep;19(5):749-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18283542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Feb;85(5):1575-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19779712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1988 Jun;54(6):1472-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2003 Jun;154(5):321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Dec 09;7:1965</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28018304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2003 Jun 6;223(1):129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12799011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2004 Jun;48(6):419-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol. 1996 Jan;16(1):36-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8820018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2011 Nov;111(5):1108-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21854512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Immunol Infect. 2000 Dec;33(4):258-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11269372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Aug 10;4(8):e6570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19668333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 May;74(10):3130-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2016 Jan 1;539:61-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26360455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2006 Nov 5;95(4):692-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16804943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 23;435(7045):1098-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15973408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Jun;174(11):3429-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1592800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Jan;173(2):697-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1987160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2015 Feb;175(4):1879-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25427595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2011 Nov;37(8):1362-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21722961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2003 Oct;21(10):1229-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12960964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2004 Sep;155(7):587-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15313261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2014 Nov;171:461-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25223851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Mar;69(3):1548-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2004 Sep 15;38(18):4900-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15487802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2008;15(2-3):93-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18685265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Nov;2(11):1146-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18769460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1999 Aug;37(8):2619-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10405411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Jun;101(12):4737-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20156682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2009 Dec 1;104(5):901-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2008 Nov;105(5):1484-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18795978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2008 Aug;74(2-3):110-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18501451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>3 Biotech. 2012 Mar;2(1):53-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22582157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2015 Dec 15;49(24):14725-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26569143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bacteriol Rev. 1950 Mar;14(1):1-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15420122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2008 Jun 1;42(11):4146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18589979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Jul;100(13):3185-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19269168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Jul 12;7:1071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Apr 30;4(3):e00144-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23631915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Jul;100(14):3518-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19345574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2017 Mar;227:353-358</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28061419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Oct;60(10):3752-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7527204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2005 Dec;39(20):4961-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2012 Apr 30;213-214:474-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22402341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2009 May 30;164(2-3):1310-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18977087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2012 Jan 15;199-200:217-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22137177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18127-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1993 Oct;43(4):645-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8240948</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000953 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000953 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:29593662
   |texte=   Petrophilic, Fe(III) Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:29593662" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021