Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization.

Identifieur interne : 000847 ( PubMed/Curation ); précédent : 000846; suivant : 000848

BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization.

Auteurs : Carl G. De Boer [États-Unis] ; Aviv Regev [États-Unis]

Source :

RBID : pubmed:29970004

Descripteurs français

English descriptors

Abstract

Variation in chromatin organization across single cells can help shed important light on the mechanisms controlling gene expression, but scale, noise, and sparsity pose significant challenges for interpretation of single cell chromatin data. Here, we develop BROCKMAN (Brockman Representation Of Chromatin by K-mers in Mark-Associated Nucleotides), an approach to infer variation in transcription factor (TF) activity across samples through unsupervised analysis of the variation in DNA sequences associated with an epigenomic mark.

DOI: 10.1186/s12859-018-2255-6
PubMed: 29970004

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29970004

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization.</title>
<author>
<name sortKey="De Boer, Carl G" sort="De Boer, Carl G" uniqKey="De Boer C" first="Carl G" last="De Boer">Carl G. De Boer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Regev, Aviv" sort="Regev, Aviv" uniqKey="Regev A" first="Aviv" last="Regev">Aviv Regev</name>
<affiliation wicri:level="1">
<nlm:affiliation>Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. carlgdeboer@gmail.com.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29970004</idno>
<idno type="pmid">29970004</idno>
<idno type="doi">10.1186/s12859-018-2255-6</idno>
<idno type="wicri:Area/PubMed/Corpus">000847</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000847</idno>
<idno type="wicri:Area/PubMed/Curation">000847</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000847</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization.</title>
<author>
<name sortKey="De Boer, Carl G" sort="De Boer, Carl G" uniqKey="De Boer C" first="Carl G" last="De Boer">Carl G. De Boer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Regev, Aviv" sort="Regev, Aviv" uniqKey="Regev A" first="Aviv" last="Regev">Aviv Regev</name>
<affiliation wicri:level="1">
<nlm:affiliation>Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. carlgdeboer@gmail.com.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC bioinformatics</title>
<idno type="eISSN">1471-2105</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Epigenomics (methods)</term>
<term>Humans</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Facteurs de transcription (métabolisme)</term>
<term>Humains</term>
<term>Sites de fixation</term>
<term>Épigénomique ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Epigenomics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Sites de fixation</term>
<term>Épigénomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Variation in chromatin organization across single cells can help shed important light on the mechanisms controlling gene expression, but scale, noise, and sparsity pose significant challenges for interpretation of single cell chromatin data. Here, we develop BROCKMAN (Brockman Representation Of Chromatin by K-mers in Mark-Associated Nucleotides), an approach to infer variation in transcription factor (TF) activity across samples through unsupervised analysis of the variation in DNA sequences associated with an epigenomic mark.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">29970004</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2105</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>07</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>BMC bioinformatics</Title>
<ISOAbbreviation>BMC Bioinformatics</ISOAbbreviation>
</Journal>
<ArticleTitle>BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization.</ArticleTitle>
<Pagination>
<MedlinePgn>253</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12859-018-2255-6</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Variation in chromatin organization across single cells can help shed important light on the mechanisms controlling gene expression, but scale, noise, and sparsity pose significant challenges for interpretation of single cell chromatin data. Here, we develop BROCKMAN (Brockman Representation Of Chromatin by K-mers in Mark-Associated Nucleotides), an approach to infer variation in transcription factor (TF) activity across samples through unsupervised analysis of the variation in DNA sequences associated with an epigenomic mark.</AbstractText>
<AbstractText Label="RESULTS">BROCKMAN represents each sample as a vector of epigenomic-mark-associated DNA word frequencies, and decomposes the resulting matrix to find hidden structure in the data, followed by unsupervised grouping of samples and identification of the TFs that distinguish groups. Applied to single cell ATAC-seq, BROCKMAN readily distinguished cell types, treatments, batch effects, experimental artifacts, and cycling cells. We show that each variable component in the k-mer landscape reflects a set of co-varying TFs, which are often known to physically interact. For example, in K562 cells, AP-1 TFs were central determinant of variability in chromatin accessibility through their variable expression levels and diverse interactions with other TFs. We provide a theoretical basis for why cooperative TF binding - and any associated epigenomic mark - is inherently more variable than non-cooperative binding.</AbstractText>
<AbstractText Label="CONCLUSIONS">BROCKMAN and related approaches will help gain a mechanistic understanding of the trans determinants of chromatin variability between cells, treatments, and individuals.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>de Boer</LastName>
<ForeName>Carl G</ForeName>
<Initials>CG</Initials>
<Identifier Source="ORCID">0000-0001-8935-5921</Identifier>
<AffiliationInfo>
<Affiliation>Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Regev</LastName>
<ForeName>Aviv</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. carlgdeboer@gmail.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA. carlgdeboer@gmail.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA. carlgdeboer@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>RM1 HG006193</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>CIHR</Agency>
<Country>Canada</Country>
</Grant>
<Grant>
<Acronym>HHMI</Acronym>
<Agency>Howard Hughes Medical Institute</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Bioinformatics</MedlineTA>
<NlmUniqueID>100965194</NlmUniqueID>
<ISSNLinking>1471-2105</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057890" MajorTopicYN="N">Epigenomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Chromatin</Keyword>
<Keyword MajorTopicYN="Y">Clustering</Keyword>
<Keyword MajorTopicYN="Y">Decomposition</Keyword>
<Keyword MajorTopicYN="Y">Epigenome</Keyword>
<Keyword MajorTopicYN="Y">Factorization</Keyword>
<Keyword MajorTopicYN="Y">K-mer</Keyword>
<Keyword MajorTopicYN="Y">N-gram</Keyword>
<Keyword MajorTopicYN="Y">Single-cell</Keyword>
<Keyword MajorTopicYN="Y">Transcription factor</Keyword>
<Keyword MajorTopicYN="Y">scATAC-seq</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>09</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29970004</ArticleId>
<ArticleId IdType="doi">10.1186/s12859-018-2255-6</ArticleId>
<ArticleId IdType="pii">10.1186/s12859-018-2255-6</ArticleId>
<ArticleId IdType="pmc">PMC6029352</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2016 Apr 18;17:72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27091476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Braz J Med Biol Res. 2014 Jan;47(1):42-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24345872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Nov 20;159(5):1212-1226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25416956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2016 Oct;48(10):1193-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27526324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2017 Oct;14(10):975-978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28825706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Feb 15;31(4):545-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25336500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2000 Nov 15;96(10):3343-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11071626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 May;23(5):777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23482648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2002 May;4(5):E131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11988758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Apr;32(4):381-386</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24658644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Oct;32(10):1053-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25086649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Nov 17;167(5):1385-1397.e11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27863250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2001 Apr 30;20(19):2438-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2015 May 27;11(5):e1004271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26016777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Nov 17;167(5):1398-1414.e24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27863251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22534-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Sep 6;489(7414):57-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 May 28;38(4):576-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20513432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11746-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8524841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 May 1;88(9):3720-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1827203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Mar;8(3):319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9521935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Jul 23;523(7561):486-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26083756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Dec;16(12):6957-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2015 Aug;47(8):955-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26075791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2000 Apr;16(4):326-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10869030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Jul 8;43(1):145-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 1995 Aug;3(2):223-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7648395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(10):R87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16207358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jan 4;277(1):816-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11641401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Aug 19;146(4):544-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21835447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2004 Dec 1;117(Pt 25):5965-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jun 13;498(7453):236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23685454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4844-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10220381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Dec 3;528(7580):142-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26605532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 May;12(5):739-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 May 22;348(6237):910-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25953818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Sep 11;158(6):1431-1443</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25215497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17807-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Jun 27;7:11938</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27346425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1997 Apr;9(2):240-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9069263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2016 Aug;17(8):1131-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27402545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hemodial Int. 2013 Oct;17(4):493-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23621585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Dec 15;167(7):1853-1866.e17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27984732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2014 Jul 17;10(7):e1003711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25033408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jul 30;329(5991):533-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20671182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2011 Nov;27(11):465-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21885149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2015 Nov;33(11):1165-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26458175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jan 18;541(7637):331-338</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28102262</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000847 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000847 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:29970004
   |texte=   BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:29970004" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021