Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication.

Identifieur interne : 000823 ( PubMed/Curation ); précédent : 000822; suivant : 000824

Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication.

Auteurs : Keisuke Nakagawa [États-Unis] ; Krishna Narayanan [États-Unis] ; Masami Wada [États-Unis] ; Shinji Makino [États-Unis]

Source :

RBID : pubmed:30068649

Descripteurs français

English descriptors

Abstract

Stress granule (SG) formation is generally triggered as a result of stress-induced translation arrest. The impact of SG formation on virus replication varies among different viruses, and the significance of SGs in coronavirus (CoV) replication is largely unknown. The present study examined the biological role of SGs in Middle East respiratory syndrome (MERS)-CoV replication. The MERS-CoV 4a accessory protein is known to inhibit SG formation in cells in which it was expressed by binding to double-stranded RNAs and inhibiting protein kinase R (PKR)-mediated phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Replication of MERS-CoV lacking the genes for 4a and 4b (MERS-CoV-Δp4), but not MERS-CoV, induced SG accumulation in MERS-CoV-susceptible HeLa/CD26 cells, while replication of both viruses failed to induce SGs in Vero cells, demonstrating cell type-specific differences in MERS-CoV-Δp4-induced SG formation. MERS-CoV-Δp4 replicated less efficiently than MERS-CoV in HeLa/CD26 cells, and inhibition of SG formation by small interfering RNA-mediated depletion of the SG components promoted MERS-CoV-Δp4 replication, demonstrating that SG formation was detrimental for MERS-CoV replication. Inefficient MERS-CoV-Δp4 replication was not due to either the induction of type I and type III interferons or the accumulation of viral mRNAs in the SGs. Rather, it was due to the inefficient translation of viral proteins, which was caused by high levels of PKR-mediated eIF2α phosphorylation and likely by the confinement of various factors that are required for translation in the SGs. Finally, we established that deletion of the 4a gene alone was sufficient for inducing SGs in infected cells. Our study revealed that 4a-mediated inhibition of SG formation facilitates viral translation, leading to efficient MERS-CoV replication.IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory failure with a high case fatality rate in patients, yet effective antivirals and vaccines are currently not available. Stress granule (SG) formation is one of the cellular stress responses to virus infection and is generally triggered as a result of stress-induced translation arrest. SGs can be beneficial or detrimental for virus replication, and the biological role of SGs in CoV infection is unclear. The present study showed that the MERS-CoV 4a accessory protein, which was reported to block SG formation in cells in which it was expressed, inhibited SG formation in infected cells. Our data suggest that 4a-mediated inhibition of SG formation facilitates the translation of viral mRNAs, resulting in efficient virus replication. To our knowledge, this report is the first to show the biological significance of SG in CoV replication and provides insight into the interplay between MERS-CoV and antiviral stress responses.

DOI: 10.1128/JVI.00902-18
PubMed: 30068649

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30068649

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication.</title>
<author>
<name sortKey="Nakagawa, Keisuke" sort="Nakagawa, Keisuke" uniqKey="Nakagawa K" first="Keisuke" last="Nakagawa">Keisuke Nakagawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Narayanan, Krishna" sort="Narayanan, Krishna" uniqKey="Narayanan K" first="Krishna" last="Narayanan">Krishna Narayanan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wada, Masami" sort="Wada, Masami" uniqKey="Wada M" first="Masami" last="Wada">Masami Wada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Makino, Shinji" sort="Makino, Shinji" uniqKey="Makino S" first="Shinji" last="Makino">Shinji Makino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA shmakino@utmb.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30068649</idno>
<idno type="pmid">30068649</idno>
<idno type="doi">10.1128/JVI.00902-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000823</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000823</idno>
<idno type="wicri:Area/PubMed/Curation">000823</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000823</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication.</title>
<author>
<name sortKey="Nakagawa, Keisuke" sort="Nakagawa, Keisuke" uniqKey="Nakagawa K" first="Keisuke" last="Nakagawa">Keisuke Nakagawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Narayanan, Krishna" sort="Narayanan, Krishna" uniqKey="Narayanan K" first="Krishna" last="Narayanan">Krishna Narayanan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wada, Masami" sort="Wada, Masami" uniqKey="Wada M" first="Masami" last="Wada">Masami Wada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Makino, Shinji" sort="Makino, Shinji" uniqKey="Makino S" first="Shinji" last="Makino">Shinji Makino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA shmakino@utmb.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Gene Deletion</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Middle East Respiratory Syndrome Coronavirus (genetics)</term>
<term>Middle East Respiratory Syndrome Coronavirus (physiology)</term>
<term>Protein Biosynthesis</term>
<term>Vero Cells</term>
<term>Viral Regulatory and Accessory Proteins (genetics)</term>
<term>Viral Regulatory and Accessory Proteins (metabolism)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Biosynthèse des protéines</term>
<term>Cellules HeLa</term>
<term>Cellules Vero</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (génétique)</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (physiologie)</term>
<term>Délétion de gène</term>
<term>Humains</term>
<term>Protéines virales régulatrices ou accessoires (génétique)</term>
<term>Protéines virales régulatrices ou accessoires (métabolisme)</term>
<term>Réplication virale</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Viral Regulatory and Accessory Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
<term>Protéines virales régulatrices ou accessoires</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Viral Regulatory and Accessory Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines virales régulatrices ou accessoires</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Gene Deletion</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Protein Biosynthesis</term>
<term>Vero Cells</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Biosynthèse des protéines</term>
<term>Cellules HeLa</term>
<term>Cellules Vero</term>
<term>Délétion de gène</term>
<term>Humains</term>
<term>Réplication virale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stress granule (SG) formation is generally triggered as a result of stress-induced translation arrest. The impact of SG formation on virus replication varies among different viruses, and the significance of SGs in coronavirus (CoV) replication is largely unknown. The present study examined the biological role of SGs in Middle East respiratory syndrome (MERS)-CoV replication. The MERS-CoV 4a accessory protein is known to inhibit SG formation in cells in which it was expressed by binding to double-stranded RNAs and inhibiting protein kinase R (PKR)-mediated phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Replication of MERS-CoV lacking the genes for 4a and 4b (MERS-CoV-Δp4), but not MERS-CoV, induced SG accumulation in MERS-CoV-susceptible HeLa/CD26 cells, while replication of both viruses failed to induce SGs in Vero cells, demonstrating cell type-specific differences in MERS-CoV-Δp4-induced SG formation. MERS-CoV-Δp4 replicated less efficiently than MERS-CoV in HeLa/CD26 cells, and inhibition of SG formation by small interfering RNA-mediated depletion of the SG components promoted MERS-CoV-Δp4 replication, demonstrating that SG formation was detrimental for MERS-CoV replication. Inefficient MERS-CoV-Δp4 replication was not due to either the induction of type I and type III interferons or the accumulation of viral mRNAs in the SGs. Rather, it was due to the inefficient translation of viral proteins, which was caused by high levels of PKR-mediated eIF2α phosphorylation and likely by the confinement of various factors that are required for translation in the SGs. Finally, we established that deletion of the 4a gene alone was sufficient for inducing SGs in infected cells. Our study revealed that 4a-mediated inhibition of SG formation facilitates viral translation, leading to efficient MERS-CoV replication.
<b>IMPORTANCE</b>
Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory failure with a high case fatality rate in patients, yet effective antivirals and vaccines are currently not available. Stress granule (SG) formation is one of the cellular stress responses to virus infection and is generally triggered as a result of stress-induced translation arrest. SGs can be beneficial or detrimental for virus replication, and the biological role of SGs in CoV infection is unclear. The present study showed that the MERS-CoV 4a accessory protein, which was reported to block SG formation in cells in which it was expressed, inhibited SG formation in infected cells. Our data suggest that 4a-mediated inhibition of SG formation facilitates the translation of viral mRNAs, resulting in efficient virus replication. To our knowledge, this report is the first to show the biological significance of SG in CoV replication and provides insight into the interplay between MERS-CoV and antiviral stress responses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30068649</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>92</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2018</Year>
<Month>10</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00902-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00902-18</ELocationID>
<Abstract>
<AbstractText>Stress granule (SG) formation is generally triggered as a result of stress-induced translation arrest. The impact of SG formation on virus replication varies among different viruses, and the significance of SGs in coronavirus (CoV) replication is largely unknown. The present study examined the biological role of SGs in Middle East respiratory syndrome (MERS)-CoV replication. The MERS-CoV 4a accessory protein is known to inhibit SG formation in cells in which it was expressed by binding to double-stranded RNAs and inhibiting protein kinase R (PKR)-mediated phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Replication of MERS-CoV lacking the genes for 4a and 4b (MERS-CoV-Δp4), but not MERS-CoV, induced SG accumulation in MERS-CoV-susceptible HeLa/CD26 cells, while replication of both viruses failed to induce SGs in Vero cells, demonstrating cell type-specific differences in MERS-CoV-Δp4-induced SG formation. MERS-CoV-Δp4 replicated less efficiently than MERS-CoV in HeLa/CD26 cells, and inhibition of SG formation by small interfering RNA-mediated depletion of the SG components promoted MERS-CoV-Δp4 replication, demonstrating that SG formation was detrimental for MERS-CoV replication. Inefficient MERS-CoV-Δp4 replication was not due to either the induction of type I and type III interferons or the accumulation of viral mRNAs in the SGs. Rather, it was due to the inefficient translation of viral proteins, which was caused by high levels of PKR-mediated eIF2α phosphorylation and likely by the confinement of various factors that are required for translation in the SGs. Finally, we established that deletion of the 4a gene alone was sufficient for inducing SGs in infected cells. Our study revealed that 4a-mediated inhibition of SG formation facilitates viral translation, leading to efficient MERS-CoV replication.
<b>IMPORTANCE</b>
Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory failure with a high case fatality rate in patients, yet effective antivirals and vaccines are currently not available. Stress granule (SG) formation is one of the cellular stress responses to virus infection and is generally triggered as a result of stress-induced translation arrest. SGs can be beneficial or detrimental for virus replication, and the biological role of SGs in CoV infection is unclear. The present study showed that the MERS-CoV 4a accessory protein, which was reported to block SG formation in cells in which it was expressed, inhibited SG formation in infected cells. Our data suggest that 4a-mediated inhibition of SG formation facilitates the translation of viral mRNAs, resulting in efficient virus replication. To our knowledge, this report is the first to show the biological significance of SG in CoV replication and provides insight into the interplay between MERS-CoV and antiviral stress responses.</AbstractText>
<CopyrightInformation>Copyright © 2018 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nakagawa</LastName>
<ForeName>Keisuke</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Narayanan</LastName>
<ForeName>Krishna</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wada</LastName>
<ForeName>Masami</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Makino</LastName>
<ForeName>Shinji</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA shmakino@utmb.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI099107</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI114657</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054334">Viral Regulatory and Accessory Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="Y">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054334" MajorTopicYN="N">Viral Regulatory and Accessory Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">MERS coronavirus</Keyword>
<Keyword MajorTopicYN="Y">accessory protein</Keyword>
<Keyword MajorTopicYN="Y">stress granules</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30068649</ArticleId>
<ArticleId IdType="pii">JVI.00902-18</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00902-18</ArticleId>
<ArticleId IdType="pmc">PMC6158436</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 2012 Apr;20(4):175-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22405519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1977 Sep;36(3):531-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">199697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Nov;82(21):10657-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18768985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2014 Oct 2;371(14):1359-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25271615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(7):3377-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17229688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2014 Sep;35(9):420-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25153707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Dec 27;147(7):1431-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10613902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1979 Apr;43(1):247-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">113494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2012 Apr;26(4):1629-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22202676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(21):13399-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2017 Aug 22;8(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28830941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Mar;89(5):2575-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25520508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):843-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9023344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Oct 26;12(10):e1005982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27783669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Apr;6(4):318-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15803138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2012 Jul 19;12(1):71-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22817989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Dec;23(24):4701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23087212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Jun 10;90(13):6049-6057</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27099317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2007 Nov 15;2(5):295-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2008 Mar;33(3):141-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18291657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jan;87(1):372-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23077311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 May;85(10):5136-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21411518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2017 Apr;31(4):1337-1353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28011649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1977 Oct;24(1):99-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">198590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2016 Jun 28;8(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27367717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2006 Feb 28;21(1):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16511343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Jun 24;6(6):e1000958</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1983 Jun;46(3):1027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6304334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet J. 2017 Feb;220:75-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28190501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 May 26;19(10):R397-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19467203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Oct;86(20):11043-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22855484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Jun;89(11):6033-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25810552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1981 Oct 15;114(1):39-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7281517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Apr;95(Pt 4):874-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24443473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Nov;87(22):12489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1992 Jun 15;206(3):901-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1318841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Feb 25;5(2):e00884-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24570370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2014 Dec 19;194:49-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24355834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Sep;87(17):9511-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23785203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(11):6314-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Mar 29;7(2):e00258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27025250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2014 Jun;20(6):1049-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24856660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Feb;180(2):567-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1846489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1977 May;11(1):187-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">559547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1982 May;42(2):432-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6283166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2007 Jun-Jul;89(6-7):799-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Mol Biol Transl Sci. 2009;90:155-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20374741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1988 Nov;62(11):4280-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2845140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Nov;89(21):10970-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26311885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jan;87(2):756-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23115276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Jan 25;14(1):e1006838</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29370303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Sep;9(9):2218-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17490409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e43031</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22912779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Dec;76(23):11989-2000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Jun;81(12):3626-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6328522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Feb;85(4):1581-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21147913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Mar;87(6):3271-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23302873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2006 Feb;34(Pt 1):7-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1987 Jun;61(6):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3033313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Apr;89(8):4457-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25653451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Mar;76(5):2029-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836380</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000823 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000823 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30068649
   |texte=   Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:30068649" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021