Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Endonucleolytic RNA Cleavage Function of nsp1 of Middle East Respiratory Syndrome Coronavirus Promotes the Production of Infectious Virus Particles in Specific Human Cell Lines.

Identifieur interne : 000811 ( PubMed/Curation ); précédent : 000810; suivant : 000812

The Endonucleolytic RNA Cleavage Function of nsp1 of Middle East Respiratory Syndrome Coronavirus Promotes the Production of Infectious Virus Particles in Specific Human Cell Lines.

Auteurs : Keisuke Nakagawa [États-Unis] ; Krishna Narayanan [États-Unis] ; Masami Wada [États-Unis] ; Vsevolod L. Popov [États-Unis] ; Maria Cajimat [États-Unis] ; Ralph S. Baric [États-Unis] ; Shinji Makino [États-Unis]

Source :

RBID : pubmed:30111568

Descripteurs français

English descriptors

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) nsp1 suppresses host gene expression in expressed cells by inhibiting translation and inducing endonucleolytic cleavage of host mRNAs, the latter of which leads to mRNA decay. We examined the biological functions of nsp1 in infected cells and its role in virus replication by using wild-type MERS-CoV and two mutant viruses with specific mutations in the nsp1; one mutant lacked both biological functions, while the other lacked the RNA cleavage function but retained the translation inhibition function. In Vero cells, all three viruses replicated efficiently with similar replication kinetics, while wild-type virus induced stronger host translational suppression and host mRNA degradation than the mutants, demonstrating that nsp1 suppressed host gene expression in infected cells. The mutant viruses replicated less efficiently than wild-type virus in Huh-7 cells, HeLa-derived cells, and 293-derived cells, the latter two of which stably expressed a viral receptor protein. In 293-derived cells, the three viruses accumulated similar levels of nsp1 and major viral structural proteins and did not induce IFN-β and IFN-λ mRNAs; however, both mutants were unable to generate intracellular virus particles as efficiently as wild-type virus, leading to inefficient production of infectious viruses. These data strongly suggest that the endonucleolytic RNA cleavage function of the nsp1 promoted MERS-CoV assembly and/or budding in a 293-derived cell line. MERS-CoV nsp1 represents the first CoV gene 1 protein that plays an important role in virus assembly/budding and is the first identified viral protein whose RNA cleavage-inducing function promotes virus assembly/budding.IMPORTANCE MERS-CoV represents a high public health threat. Because CoV nsp1 is a major viral virulence factor, uncovering the biological functions of MERS-CoV nsp1 could contribute to our understanding of MERS-CoV pathogenicity and spur development of medical countermeasures. Expressed MERS-CoV nsp1 suppresses host gene expression, but its biological functions for virus replication and effects on host gene expression in infected cells are largely unexplored. We found that nsp1 suppressed host gene expression in infected cells. Our data further demonstrated that nsp1, which was not detected in virus particles, promoted virus assembly or budding in a 293-derived cell line, leading to efficient virus replication. These data suggest that nsp1 plays an important role in MERS-CoV replication and possibly affects virus-induced diseases by promoting virus particle production in infected hosts. Our data, which uncovered an unexpected novel biological function of nsp1 in virus replication, contribute to further understanding of the MERS-CoV replication strategies.

DOI: 10.1128/JVI.01157-18
PubMed: 30111568

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30111568

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Endonucleolytic RNA Cleavage Function of nsp1 of Middle East Respiratory Syndrome Coronavirus Promotes the Production of Infectious Virus Particles in Specific Human Cell Lines.</title>
<author>
<name sortKey="Nakagawa, Keisuke" sort="Nakagawa, Keisuke" uniqKey="Nakagawa K" first="Keisuke" last="Nakagawa">Keisuke Nakagawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Narayanan, Krishna" sort="Narayanan, Krishna" uniqKey="Narayanan K" first="Krishna" last="Narayanan">Krishna Narayanan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wada, Masami" sort="Wada, Masami" uniqKey="Wada M" first="Masami" last="Wada">Masami Wada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Popov, Vsevolod L" sort="Popov, Vsevolod L" uniqKey="Popov V" first="Vsevolod L" last="Popov">Vsevolod L. Popov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cajimat, Maria" sort="Cajimat, Maria" uniqKey="Cajimat M" first="Maria" last="Cajimat">Maria Cajimat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology and Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology and Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Makino, Shinji" sort="Makino, Shinji" uniqKey="Makino S" first="Shinji" last="Makino">Shinji Makino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA shmakino@utmb.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30111568</idno>
<idno type="pmid">30111568</idno>
<idno type="doi">10.1128/JVI.01157-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000811</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000811</idno>
<idno type="wicri:Area/PubMed/Curation">000811</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000811</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Endonucleolytic RNA Cleavage Function of nsp1 of Middle East Respiratory Syndrome Coronavirus Promotes the Production of Infectious Virus Particles in Specific Human Cell Lines.</title>
<author>
<name sortKey="Nakagawa, Keisuke" sort="Nakagawa, Keisuke" uniqKey="Nakagawa K" first="Keisuke" last="Nakagawa">Keisuke Nakagawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Narayanan, Krishna" sort="Narayanan, Krishna" uniqKey="Narayanan K" first="Krishna" last="Narayanan">Krishna Narayanan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wada, Masami" sort="Wada, Masami" uniqKey="Wada M" first="Masami" last="Wada">Masami Wada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Popov, Vsevolod L" sort="Popov, Vsevolod L" uniqKey="Popov V" first="Vsevolod L" last="Popov">Vsevolod L. Popov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cajimat, Maria" sort="Cajimat, Maria" uniqKey="Cajimat M" first="Maria" last="Cajimat">Maria Cajimat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology and Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology and Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Makino, Shinji" sort="Makino, Shinji" uniqKey="Makino S" first="Shinji" last="Makino">Shinji Makino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA shmakino@utmb.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>Coronavirus Infections (pathology)</term>
<term>Gene Expression (genetics)</term>
<term>HEK293 Cells</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Interferon-beta (biosynthesis)</term>
<term>Interferon-beta (genetics)</term>
<term>Interferon-gamma (biosynthesis)</term>
<term>Interferon-gamma (genetics)</term>
<term>Middle East Respiratory Syndrome Coronavirus (genetics)</term>
<term>RNA Cleavage (physiology)</term>
<term>RNA Stability (physiology)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Vero Cells</term>
<term>Viral Nonstructural Proteins (genetics)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
<term>Virus Assembly (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>Animaux</term>
<term>Assemblage viral (génétique)</term>
<term>Cellules HEK293</term>
<term>Cellules HeLa</term>
<term>Cellules Vero</term>
<term>Clivage de l'ARN (physiologie)</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (génétique)</term>
<term>Expression des gènes (génétique)</term>
<term>Humains</term>
<term>Infections à coronavirus (anatomopathologie)</term>
<term>Interféron bêta (biosynthèse)</term>
<term>Interféron bêta (génétique)</term>
<term>Interféron gamma (biosynthèse)</term>
<term>Interféron gamma (génétique)</term>
<term>Lignée cellulaire</term>
<term>Protéines virales non structurales (génétique)</term>
<term>Protéines virales non structurales (métabolisme)</term>
<term>Stabilité de l'ARN (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Interferon-beta</term>
<term>Interferon-gamma</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Interféron bêta</term>
<term>Interféron gamma</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression</term>
<term>Interferon-beta</term>
<term>Interferon-gamma</term>
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>Viral Nonstructural Proteins</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Assemblage viral</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
<term>Expression des gènes</term>
<term>Interféron bêta</term>
<term>Interféron gamma</term>
<term>Protéines virales non structurales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Messenger</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Protéines virales non structurales</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Clivage de l'ARN</term>
<term>Stabilité de l'ARN</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>RNA Cleavage</term>
<term>RNA Stability</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>HEK293 Cells</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HEK293</term>
<term>Cellules HeLa</term>
<term>Cellules Vero</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Middle East respiratory syndrome coronavirus (MERS-CoV) nsp1 suppresses host gene expression in expressed cells by inhibiting translation and inducing endonucleolytic cleavage of host mRNAs, the latter of which leads to mRNA decay. We examined the biological functions of nsp1 in infected cells and its role in virus replication by using wild-type MERS-CoV and two mutant viruses with specific mutations in the nsp1; one mutant lacked both biological functions, while the other lacked the RNA cleavage function but retained the translation inhibition function. In Vero cells, all three viruses replicated efficiently with similar replication kinetics, while wild-type virus induced stronger host translational suppression and host mRNA degradation than the mutants, demonstrating that nsp1 suppressed host gene expression in infected cells. The mutant viruses replicated less efficiently than wild-type virus in Huh-7 cells, HeLa-derived cells, and 293-derived cells, the latter two of which stably expressed a viral receptor protein. In 293-derived cells, the three viruses accumulated similar levels of nsp1 and major viral structural proteins and did not induce
<i>IFN</i>
-β and
<i>IFN</i>
-λ mRNAs; however, both mutants were unable to generate intracellular virus particles as efficiently as wild-type virus, leading to inefficient production of infectious viruses. These data strongly suggest that the endonucleolytic RNA cleavage function of the nsp1 promoted MERS-CoV assembly and/or budding in a 293-derived cell line. MERS-CoV nsp1 represents the first CoV gene 1 protein that plays an important role in virus assembly/budding and is the first identified viral protein whose RNA cleavage-inducing function promotes virus assembly/budding.
<b>IMPORTANCE</b>
MERS-CoV represents a high public health threat. Because CoV nsp1 is a major viral virulence factor, uncovering the biological functions of MERS-CoV nsp1 could contribute to our understanding of MERS-CoV pathogenicity and spur development of medical countermeasures. Expressed MERS-CoV nsp1 suppresses host gene expression, but its biological functions for virus replication and effects on host gene expression in infected cells are largely unexplored. We found that nsp1 suppressed host gene expression in infected cells. Our data further demonstrated that nsp1, which was not detected in virus particles, promoted virus assembly or budding in a 293-derived cell line, leading to efficient virus replication. These data suggest that nsp1 plays an important role in MERS-CoV replication and possibly affects virus-induced diseases by promoting virus particle production in infected hosts. Our data, which uncovered an unexpected novel biological function of nsp1 in virus replication, contribute to further understanding of the MERS-CoV replication strategies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30111568</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>92</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2018</Year>
<Month>11</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>The Endonucleolytic RNA Cleavage Function of nsp1 of Middle East Respiratory Syndrome Coronavirus Promotes the Production of Infectious Virus Particles in Specific Human Cell Lines.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01157-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01157-18</ELocationID>
<Abstract>
<AbstractText>Middle East respiratory syndrome coronavirus (MERS-CoV) nsp1 suppresses host gene expression in expressed cells by inhibiting translation and inducing endonucleolytic cleavage of host mRNAs, the latter of which leads to mRNA decay. We examined the biological functions of nsp1 in infected cells and its role in virus replication by using wild-type MERS-CoV and two mutant viruses with specific mutations in the nsp1; one mutant lacked both biological functions, while the other lacked the RNA cleavage function but retained the translation inhibition function. In Vero cells, all three viruses replicated efficiently with similar replication kinetics, while wild-type virus induced stronger host translational suppression and host mRNA degradation than the mutants, demonstrating that nsp1 suppressed host gene expression in infected cells. The mutant viruses replicated less efficiently than wild-type virus in Huh-7 cells, HeLa-derived cells, and 293-derived cells, the latter two of which stably expressed a viral receptor protein. In 293-derived cells, the three viruses accumulated similar levels of nsp1 and major viral structural proteins and did not induce
<i>IFN</i>
-β and
<i>IFN</i>
-λ mRNAs; however, both mutants were unable to generate intracellular virus particles as efficiently as wild-type virus, leading to inefficient production of infectious viruses. These data strongly suggest that the endonucleolytic RNA cleavage function of the nsp1 promoted MERS-CoV assembly and/or budding in a 293-derived cell line. MERS-CoV nsp1 represents the first CoV gene 1 protein that plays an important role in virus assembly/budding and is the first identified viral protein whose RNA cleavage-inducing function promotes virus assembly/budding.
<b>IMPORTANCE</b>
MERS-CoV represents a high public health threat. Because CoV nsp1 is a major viral virulence factor, uncovering the biological functions of MERS-CoV nsp1 could contribute to our understanding of MERS-CoV pathogenicity and spur development of medical countermeasures. Expressed MERS-CoV nsp1 suppresses host gene expression, but its biological functions for virus replication and effects on host gene expression in infected cells are largely unexplored. We found that nsp1 suppressed host gene expression in infected cells. Our data further demonstrated that nsp1, which was not detected in virus particles, promoted virus assembly or budding in a 293-derived cell line, leading to efficient virus replication. These data suggest that nsp1 plays an important role in MERS-CoV replication and possibly affects virus-induced diseases by promoting virus particle production in infected hosts. Our data, which uncovered an unexpected novel biological function of nsp1 in virus replication, contribute to further understanding of the MERS-CoV replication strategies.</AbstractText>
<CopyrightInformation>Copyright © 2018 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nakagawa</LastName>
<ForeName>Keisuke</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Narayanan</LastName>
<ForeName>Krishna</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wada</LastName>
<ForeName>Masami</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Popov</LastName>
<ForeName>Vsevolod L</ForeName>
<Initials>VL</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cajimat</LastName>
<ForeName>Maria</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology and Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Makino</LastName>
<ForeName>Shinji</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA shmakino@utmb.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI099107</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI108197</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI110700</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI114657</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C573415">IFNG protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>77238-31-4</RegistryNumber>
<NameOfSubstance UI="D016899">Interferon-beta</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>82115-62-6</RegistryNumber>
<NameOfSubstance UI="D007371">Interferon-gamma</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016899" MajorTopicYN="N">Interferon-beta</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007371" MajorTopicYN="N">Interferon-gamma</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059367" MajorTopicYN="N">RNA Cleavage</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020871" MajorTopicYN="N">RNA Stability</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019065" MajorTopicYN="N">Virus Assembly</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">MERS coronavirus</Keyword>
<Keyword MajorTopicYN="Y">nsp1</Keyword>
<Keyword MajorTopicYN="Y">virus assembly/budding</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30111568</ArticleId>
<ArticleId IdType="pii">JVI.01157-18</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01157-18</ArticleId>
<ArticleId IdType="pmc">PMC6189501</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1998 Nov;72(11):8636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1977 Sep;36(3):531-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">199697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jun;85(11):5363-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21430045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2016 Jul 22;8(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27455307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2013 Nov-Dec;4(6):693-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23900973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Sep;77(17):9337-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12915549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jan 24;451(7177):425-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18200009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Oct;68(10):6523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(21):13399-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2016 Nov 28;2:16226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27892925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1982 Nov;44(2):487-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6292513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2017 Aug 22;8(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28830941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2007 Feb;15(2):51-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17207625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(1):20-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Oct;131(2):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7593163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Jun 10;90(13):6049-6057</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27099317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 May 10;361(2):304-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Aug 10;3(8):e109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17696607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Radiat Res. 1996 Sep;37(3):199-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8996978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Nov;16(11):1134-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19838190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 May;82(9):4471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Apr 15;15(8):2020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1977 Oct;24(1):99-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">198590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jun;82(11):5527-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18367525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1996 Apr 1;218(1):52-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8615041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Apr 16;202:89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25432065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Mar;87(5):2949-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23269811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2018 Jan 30;92(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29187542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2886-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19179289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2017 Apr;504:25-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28142079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Oct;86(20):11128-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22855488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Jun;89(12):6442-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25855745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1983 Jun;46(3):1027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6304334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):11620-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17715225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 May;83(10):5282-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19264783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Oncol (R Coll Radiol). 2013 Oct;25(10):578-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23849504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Dec;75(24):12228-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11711614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Jun;89(11):6033-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25810552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2016;96:59-126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27712628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Aug 12;90(17):7943-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27334584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Feb;83(4):1837-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Mar;4(3):363-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2014 Dec 19;194:49-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24355834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1982 Sep;42(9):3858-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6286115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2017 Aug;508:45-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28494344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 May;76(10):4987-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Apr;89(7):3598-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25589656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Feb;180(2):567-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1846489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Oct;83(19):9672-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19605472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 May;74(9):4319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10756047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Oct;72(10):7885-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1984 Mar;33(2):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6325194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Apr;89(7):3659-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25589660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Nov;89(21):10970-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26311885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Aug 21;10(8):e1004250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25144235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Nov 06;10(11):e1004502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2014 Sep;109:97-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24995382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):1701-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Nov;88(21):12727-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25142597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Sep;86(17):9527-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22740404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Feb;75(3):1312-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1967 Jun 14;26(2):227-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4962270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2014 Jan 20;449:287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24418563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Aug;79(15):9470-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16014910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Dec;71(12):9278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Jun;81(12):3626-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6328522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1996 May 15;156(10):3901-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8621929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2018 Aug;18(8):e217-e227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29680581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2013 Oct;19(10):1313-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24013700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jan;85(1):638-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21047955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Aug;87(16):9379-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23785207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2017 Nov;511:95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28843094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2006;66:193-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Oct 29;11(10):e1005215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26513244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Dec;7(12):e1002433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2015 May;479-480:600-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25721579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiat Res. 1980 Aug;83(2):330-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6250187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Sep;73(9):7441-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438834</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000811 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000811 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30111568
   |texte=   The Endonucleolytic RNA Cleavage Function of nsp1 of Middle East Respiratory Syndrome Coronavirus Promotes the Production of Infectious Virus Particles in Specific Human Cell Lines.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:30111568" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021