Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Monte Carlo Wavefunction Approach to Singlet Fission Dynamics of Molecular Aggregates.

Identifieur interne : 000652 ( PubMed/Curation ); précédent : 000651; suivant : 000653

Monte Carlo Wavefunction Approach to Singlet Fission Dynamics of Molecular Aggregates.

Auteurs : Masayoshi Nakano [Japon] ; Kenji Okada [Japon] ; Takanori Nagami [Japon] ; Takayoshi Tonami [Japon] ; Ryohei Kishi [Japon] ; Yasutaka Kitagawa [Japon]

Source :

RBID : pubmed:30717244

Descripteurs français

English descriptors

Abstract

We have developed a Monte Carlo wavefunction (MCWF) approach to the singlet fission (SF) dynamics of linear aggregate models composed of monomers with weak diradical character. As an example, the SF dynamics for a pentacene dimer model is investigated by considering the intermolecular electronic coupling and the vibronic coupling. By comparing with the results by the quantum master equation (QME) approach, we clarify the dependences of the MCWF results on the time step (Δt) and the number of MC trajectories (MC). The SF dynamics by the MCWF approach is found to quantitatively (within an error of 0.02% for SF rate and of 0.005% for double-triplet (TT) yield) reproduce that by the QME approach when using a sufficiently small Δt (~0.03 fs) and a sufficiently large MC (~10⁵). The computational time (treq) in the MCWF approach also exhibits dramatic reduction with increasing the size of aggregates (N-mers) as compared to that in the QME approach, e.g., ~34 times faster at the 20-mer, and the size-dependence of treq shows significant reduction from N5.15 (QME) to N3.09 (MCWF). These results demonstrate the promising high performance of the MCWF approach to the SF dynamics in extended multiradical molecular aggregates including a large number of quantum dissipation, e.g., vibronic coupling, modes.

DOI: 10.3390/molecules24030541
PubMed: 30717244

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30717244

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Monte Carlo Wavefunction Approach to Singlet Fission Dynamics of Molecular Aggregates.</title>
<author>
<name sortKey="Nakano, Masayoshi" sort="Nakano, Masayoshi" uniqKey="Nakano M" first="Masayoshi" last="Nakano">Masayoshi Nakano</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. mnaka@cheng.es.osaka-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Okada, Kenji" sort="Okada, Kenji" uniqKey="Okada K" first="Kenji" last="Okada">Kenji Okada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. kenji.okada@cheng.es.osaka-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Nagami, Takanori" sort="Nagami, Takanori" uniqKey="Nagami T" first="Takanori" last="Nagami">Takanori Nagami</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. takanori.nagami@cheng.es.osaka-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tonami, Takayoshi" sort="Tonami, Takayoshi" uniqKey="Tonami T" first="Takayoshi" last="Tonami">Takayoshi Tonami</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. takayoshi.tonami@cheng.es.osaka-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kishi, Ryohei" sort="Kishi, Ryohei" uniqKey="Kishi R" first="Ryohei" last="Kishi">Ryohei Kishi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. rkishi@cheng.es.osaka-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kitagawa, Yasutaka" sort="Kitagawa, Yasutaka" uniqKey="Kitagawa Y" first="Yasutaka" last="Kitagawa">Yasutaka Kitagawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. kitagawa@cheng.es.osaka-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30717244</idno>
<idno type="pmid">30717244</idno>
<idno type="doi">10.3390/molecules24030541</idno>
<idno type="wicri:Area/PubMed/Corpus">000652</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000652</idno>
<idno type="wicri:Area/PubMed/Curation">000652</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000652</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Monte Carlo Wavefunction Approach to Singlet Fission Dynamics of Molecular Aggregates.</title>
<author>
<name sortKey="Nakano, Masayoshi" sort="Nakano, Masayoshi" uniqKey="Nakano M" first="Masayoshi" last="Nakano">Masayoshi Nakano</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. mnaka@cheng.es.osaka-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Okada, Kenji" sort="Okada, Kenji" uniqKey="Okada K" first="Kenji" last="Okada">Kenji Okada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. kenji.okada@cheng.es.osaka-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Nagami, Takanori" sort="Nagami, Takanori" uniqKey="Nagami T" first="Takanori" last="Nagami">Takanori Nagami</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. takanori.nagami@cheng.es.osaka-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tonami, Takayoshi" sort="Tonami, Takayoshi" uniqKey="Tonami T" first="Takayoshi" last="Tonami">Takayoshi Tonami</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. takayoshi.tonami@cheng.es.osaka-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kishi, Ryohei" sort="Kishi, Ryohei" uniqKey="Kishi R" first="Ryohei" last="Kishi">Ryohei Kishi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. rkishi@cheng.es.osaka-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kitagawa, Yasutaka" sort="Kitagawa, Yasutaka" uniqKey="Kitagawa Y" first="Yasutaka" last="Kitagawa">Yasutaka Kitagawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. kitagawa@cheng.es.osaka-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecules (Basel, Switzerland)</title>
<idno type="eISSN">1420-3049</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dimerization</term>
<term>Electrons</term>
<term>Kinetics</term>
<term>Models, Chemical</term>
<term>Monte Carlo Method</term>
<term>Naphthacenes (chemistry)</term>
<term>Quantum Theory</term>
<term>Thermodynamics</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cinétique</term>
<term>Dimérisation</term>
<term>Facteurs temps</term>
<term>Modèles chimiques</term>
<term>Méthode de Monte-Carlo</term>
<term>Naphtacènes ()</term>
<term>Thermodynamique</term>
<term>Théorie quantique</term>
<term>Électrons</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Naphthacenes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Dimerization</term>
<term>Electrons</term>
<term>Kinetics</term>
<term>Models, Chemical</term>
<term>Monte Carlo Method</term>
<term>Quantum Theory</term>
<term>Thermodynamics</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Dimérisation</term>
<term>Facteurs temps</term>
<term>Modèles chimiques</term>
<term>Méthode de Monte-Carlo</term>
<term>Naphtacènes</term>
<term>Thermodynamique</term>
<term>Théorie quantique</term>
<term>Électrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have developed a Monte Carlo wavefunction (MCWF) approach to the singlet fission (SF) dynamics of linear aggregate models composed of monomers with weak diradical character. As an example, the SF dynamics for a pentacene dimer model is investigated by considering the intermolecular electronic coupling and the vibronic coupling. By comparing with the results by the quantum master equation (QME) approach, we clarify the dependences of the MCWF results on the time step (Δ
<i>t</i>
) and the number of MC trajectories (
<i>M</i>
<sub>C</sub>
). The SF dynamics by the MCWF approach is found to quantitatively (within an error of 0.02% for SF rate and of 0.005% for double-triplet (TT) yield) reproduce that by the QME approach when using a sufficiently small Δ
<i>t</i>
(~0.03 fs) and a sufficiently large
<i>M</i>
<sub>C</sub>
(~10⁵). The computational time (
<i>t</i>
<sub>req</sub>
) in the MCWF approach also exhibits dramatic reduction with increasing the size of aggregates (
<i>N</i>
-mers) as compared to that in the QME approach, e.g., ~34 times faster at the 20-mer, and the size-dependence of
<i>t</i>
<sub>req</sub>
shows significant reduction from
<i>N</i>
<sup>5.15</sup>
(QME) to
<i>N</i>
<sup>3.09</sup>
(MCWF). These results demonstrate the promising high performance of the MCWF approach to the SF dynamics in extended multiradical molecular aggregates including a large number of quantum dissipation, e.g., vibronic coupling, modes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30717244</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>05</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1420-3049</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>Feb</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Molecules (Basel, Switzerland)</Title>
<ISOAbbreviation>Molecules</ISOAbbreviation>
</Journal>
<ArticleTitle>Monte Carlo Wavefunction Approach to Singlet Fission Dynamics of Molecular Aggregates.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E541</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/molecules24030541</ELocationID>
<Abstract>
<AbstractText>We have developed a Monte Carlo wavefunction (MCWF) approach to the singlet fission (SF) dynamics of linear aggregate models composed of monomers with weak diradical character. As an example, the SF dynamics for a pentacene dimer model is investigated by considering the intermolecular electronic coupling and the vibronic coupling. By comparing with the results by the quantum master equation (QME) approach, we clarify the dependences of the MCWF results on the time step (Δ
<i>t</i>
) and the number of MC trajectories (
<i>M</i>
<sub>C</sub>
). The SF dynamics by the MCWF approach is found to quantitatively (within an error of 0.02% for SF rate and of 0.005% for double-triplet (TT) yield) reproduce that by the QME approach when using a sufficiently small Δ
<i>t</i>
(~0.03 fs) and a sufficiently large
<i>M</i>
<sub>C</sub>
(~10⁵). The computational time (
<i>t</i>
<sub>req</sub>
) in the MCWF approach also exhibits dramatic reduction with increasing the size of aggregates (
<i>N</i>
-mers) as compared to that in the QME approach, e.g., ~34 times faster at the 20-mer, and the size-dependence of
<i>t</i>
<sub>req</sub>
shows significant reduction from
<i>N</i>
<sup>5.15</sup>
(QME) to
<i>N</i>
<sup>3.09</sup>
(MCWF). These results demonstrate the promising high performance of the MCWF approach to the SF dynamics in extended multiradical molecular aggregates including a large number of quantum dissipation, e.g., vibronic coupling, modes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nakano</LastName>
<ForeName>Masayoshi</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-3544-1290</Identifier>
<AffiliationInfo>
<Affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. mnaka@cheng.es.osaka-u.ac.jp.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. mnaka@cheng.es.osaka-u.ac.jp.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan. mnaka@cheng.es.osaka-u.ac.jp.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan. mnaka@cheng.es.osaka-u.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Okada</LastName>
<ForeName>Kenji</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. kenji.okada@cheng.es.osaka-u.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nagami</LastName>
<ForeName>Takanori</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. takanori.nagami@cheng.es.osaka-u.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tonami</LastName>
<ForeName>Takayoshi</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. takayoshi.tonami@cheng.es.osaka-u.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kishi</LastName>
<ForeName>Ryohei</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0002-6005-7629</Identifier>
<AffiliationInfo>
<Affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. rkishi@cheng.es.osaka-u.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kitagawa</LastName>
<ForeName>Yasutaka</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0002-6583-7026</Identifier>
<AffiliationInfo>
<Affiliation>Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. kitagawa@cheng.es.osaka-u.ac.jp.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. kitagawa@cheng.es.osaka-u.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>JP18H01943, JP17H05157, JP26107004, JP18J20887</GrantID>
<Agency>Japan Society for the Promotion of Science</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Molecules</MedlineTA>
<NlmUniqueID>100964009</NlmUniqueID>
<ISSNLinking>1420-3049</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009279">Naphthacenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9FQU5HA0UY</RegistryNumber>
<NameOfSubstance UI="C523499">pentacene</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004583" MajorTopicYN="Y">Electrons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="Y">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009010" MajorTopicYN="N">Monte Carlo Method</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009279" MajorTopicYN="N">Naphthacenes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011789" MajorTopicYN="N">Quantum Theory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Monte Carlo wavefunction</Keyword>
<Keyword MajorTopicYN="N">molecular aggregate</Keyword>
<Keyword MajorTopicYN="N">quantum master equation</Keyword>
<Keyword MajorTopicYN="N">singlet fission</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30717244</ArticleId>
<ArticleId IdType="pii">molecules24030541</ArticleId>
<ArticleId IdType="doi">10.3390/molecules24030541</ArticleId>
<ArticleId IdType="pmc">PMC6384917</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Chem Phys. 2007 Oct 7;127(13):134309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17919026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2008 May 9;100(18):180402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18518352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2009 Nov 14;131(18):184102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19916593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2010 Nov 18;114(45):14168-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20184354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2010 Nov 10;110(11):6891-936</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21053979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Aug 10;133(31):11830-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21755937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Dec 14;133(49):19944-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22084927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Dec 16;334(6062):1541-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phys Chem. 2013;64:361-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23298243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2013 Mar 21;138(11):114102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23534622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2013 Mar 21;138(11):114103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23534623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem. 2014 Jun;6(6):492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24848234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2014 Aug 21;141(7):074705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25149804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem Lett. 2015 Feb 5;6(3):360-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26261948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem Lett. 2015 Dec 17;6(24):4972-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rec. 2017 Jan;17(1):27-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27492662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Top Curr Chem (Cham). 2017 Apr;375(2):47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28378270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2018 Jan 17;140(2):814-826</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29240411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2018 Aug 8;118(15):7164-7207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29648797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2019 Jan 5;40(1):89-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30226650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev A. 1995 Apr;51(4):3302-3308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9911969</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000652 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000652 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30717244
   |texte=   Monte Carlo Wavefunction Approach to Singlet Fission Dynamics of Molecular Aggregates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:30717244" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021