Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A k-mer grammar analysis to uncover maize regulatory architecture.

Identifieur interne : 000611 ( PubMed/Curation ); précédent : 000610; suivant : 000612

A k-mer grammar analysis to uncover maize regulatory architecture.

Auteurs : María Katherine Mejía-Guerra [États-Unis] ; Edward S. Buckler [États-Unis]

Source :

RBID : pubmed:30876396

Descripteurs français

English descriptors

Abstract

Only a small percentage of the genome sequence is involved in regulation of gene expression, but to biochemically identify this portion is expensive and laborious. In species like maize, with diverse intergenic regions and lots of repetitive elements, this is an especially challenging problem that limits the use of the data from one line to the other. While regulatory regions are rare, they do have characteristic chromatin contexts and sequence organization (the grammar) with which they can be identified.

DOI: 10.1186/s12870-019-1693-2
PubMed: 30876396

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30876396

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A k-mer grammar analysis to uncover maize regulatory architecture.</title>
<author>
<name sortKey="Mejia Guerra, Maria Katherine" sort="Mejia Guerra, Maria Katherine" uniqKey="Mejia Guerra M" first="María Katherine" last="Mejía-Guerra">María Katherine Mejía-Guerra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, 14853, NY, USA. mm2842@cornell.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, 14853, NY</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Buckler, Edward S" sort="Buckler, Edward S" uniqKey="Buckler E" first="Edward S" last="Buckler">Edward S. Buckler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, 14853, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, 14853, NY</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30876396</idno>
<idno type="pmid">30876396</idno>
<idno type="doi">10.1186/s12870-019-1693-2</idno>
<idno type="wicri:Area/PubMed/Corpus">000611</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000611</idno>
<idno type="wicri:Area/PubMed/Curation">000611</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000611</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A k-mer grammar analysis to uncover maize regulatory architecture.</title>
<author>
<name sortKey="Mejia Guerra, Maria Katherine" sort="Mejia Guerra, Maria Katherine" uniqKey="Mejia Guerra M" first="María Katherine" last="Mejía-Guerra">María Katherine Mejía-Guerra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, 14853, NY, USA. mm2842@cornell.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, 14853, NY</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Buckler, Edward S" sort="Buckler, Edward S" uniqKey="Buckler E" first="Edward S" last="Buckler">Edward S. Buckler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, 14853, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, 14853, NY</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Genome, Plant</term>
<term>Machine Learning</term>
<term>Models, Genetic</term>
<term>Regulatory Sequences, Nucleic Acid</term>
<term>Software</term>
<term>Zea mays (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Apprentissage machine</term>
<term>Génome végétal</term>
<term>Logiciel</term>
<term>Modèles génétiques</term>
<term>Séquences d'acides nucléiques régulatrices</term>
<term>Zea mays (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome, Plant</term>
<term>Machine Learning</term>
<term>Models, Genetic</term>
<term>Regulatory Sequences, Nucleic Acid</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Apprentissage machine</term>
<term>Génome végétal</term>
<term>Logiciel</term>
<term>Modèles génétiques</term>
<term>Séquences d'acides nucléiques régulatrices</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Only a small percentage of the genome sequence is involved in regulation of gene expression, but to biochemically identify this portion is expensive and laborious. In species like maize, with diverse intergenic regions and lots of repetitive elements, this is an especially challenging problem that limits the use of the data from one line to the other. While regulatory regions are rare, they do have characteristic chromatin contexts and sequence organization (the grammar) with which they can be identified.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30876396</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Mar</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A k-mer grammar analysis to uncover maize regulatory architecture.</ArticleTitle>
<Pagination>
<MedlinePgn>103</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-019-1693-2</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Only a small percentage of the genome sequence is involved in regulation of gene expression, but to biochemically identify this portion is expensive and laborious. In species like maize, with diverse intergenic regions and lots of repetitive elements, this is an especially challenging problem that limits the use of the data from one line to the other. While regulatory regions are rare, they do have characteristic chromatin contexts and sequence organization (the grammar) with which they can be identified.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We developed a computational framework to exploit this sequence arrangement. The models learn to classify regulatory regions based on sequence features - k-mers. To do this, we borrowed two approaches from the field of natural language processing: (1) "bag-of-words" which is commonly used for differentially weighting key words in tasks like sentiment analyses, and (2) a vector-space model using word2vec (vector-k-mers), that captures semantic and linguistic relationships between words. We built "bag-of-k-mers" and "vector-k-mers" models that distinguish between regulatory and non-regulatory regions with an average accuracy above 90%. Our "bag-of-k-mers" achieved higher overall accuracy, while the "vector-k-mers" models were more useful in highlighting key groups of sequences within the regulatory regions.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">These models now provide powerful tools to annotate regulatory regions in other maize lines beyond the reference, at low cost and with high accuracy.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mejía-Guerra</LastName>
<ForeName>María Katherine</ForeName>
<Initials>MK</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2791-182X</Identifier>
<AffiliationInfo>
<Affiliation>Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, 14853, NY, USA. mm2842@cornell.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buckler</LastName>
<ForeName>Edward S</ForeName>
<Initials>ES</Initials>
<AffiliationInfo>
<Affiliation>Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, 14853, NY, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>USDA-ARS, Research Geneticist, USDA ARS Robert Holley Center, Ithaca, 14853, NY, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Breeding and Genetics, Cornell University, 159 Biotechnology Building, Ithaca, 14853, NY, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>IOS #1238014</GrantID>
<Agency>National Science Foundation</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069550" MajorTopicYN="N">Machine Learning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="Y">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012045" MajorTopicYN="Y">Regulatory Sequences, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="Y">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Crops genomics</Keyword>
<Keyword MajorTopicYN="N">Gene regulatory regions</Keyword>
<Keyword MajorTopicYN="N">Machine learning models</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30876396</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-019-1693-2</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-019-1693-2</ArticleId>
<ArticleId IdType="pmc">PMC6419808</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Apr;9(2):172-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16459128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(2):R24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(9):R137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Jan;69(1-2):179-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18937034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 29;457(7229):551-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19189423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Jun;21(6):1647-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19567707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Nov;5(11):e1000740</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19936069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):559-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20628352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jun 15;27(12):1696-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Dec;21(12):2167-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21875935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jan 1;28(1):56-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 May 27;44(7):743-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22634752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2012 Aug 1;26(15):1685-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22855831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Sep;22(9):1711-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Sep;22(9):1798-812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2013 Jan;29(1):11-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23102583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2013 Oct 04;14:298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24093548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24477691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2014 Jul 17;10(7):e1003711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25033408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Sep;26(9):3488-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25194027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Dec 04;10(12):e1004845</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25474422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Jan 15;160(1-2):191-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25557079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jan;27(1):104-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25616871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Apr;24:119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25795171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Apr 16;6:6914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25881062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2015 Aug;47(8):955-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26075791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2015 Aug;33(8):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26213851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Oct;12(10):931-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26301843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Dec 3;528(7580):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26550828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Nov 10;10(11):e0141287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26555596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D116-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26586801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Dec;27(12):3309-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26628745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2016 Nov;17(6):967-979</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26634919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6508-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27155014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 May 31;113(22):E3177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27185945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2016 Jul;38(7):605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27192961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2016 Jul;26(7):990-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27197224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Mar 6;10(3):414-426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27381443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Sep 8;166(6):1598</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27610578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Sel Evol. 2016 Dec 9;48(1):97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27938327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2017 Mar 14;11(Suppl 2):7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28361702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2017 Jun;35(6):530-546</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28377102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jun 2;45(10):5666-5677</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28472398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jun 22;546(7659):524-527</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28605751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2018 Jan 26;14(1):e1005944</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29373581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2018 Sep;50(9):1282-1288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30061736</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000611 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000611 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30876396
   |texte=   A k-mer grammar analysis to uncover maize regulatory architecture.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:30876396" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021