Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SArKS: de novo discovery of gene expression regulatory motif sites and domains by suffix array kernel smoothing.

Identifieur interne : 000599 ( PubMed/Curation ); précédent : 000598; suivant : 000600

SArKS: de novo discovery of gene expression regulatory motif sites and domains by suffix array kernel smoothing.

Auteurs : Dennis C. Wylie [États-Unis] ; Hans A. Hofmann [États-Unis] ; Boris V. Zemelman [États-Unis]

Source :

RBID : pubmed:30903136

Abstract

We set out to develop an algorithm that can mine differential gene expression data to identify candidate cell type-specific DNA regulatory sequences. Differential expression is usually quantified as a continuous score-fold-change, test-statistic, P-value-comparing biological classes. Unlike existing approaches, our de novo strategy, termed SArKS, applies non-parametric kernel smoothing to uncover promoter motif sites that correlate with elevated differential expression scores. SArKS detects motif k-mers by smoothing sequence scores over sequence similarity. A second round of smoothing over spatial proximity reveals multi-motif domains (MMDs). Discovered motif sites can then be merged or extended based on adjacency within MMDs. False positive rates are estimated and controlled by permutation testing.

DOI: 10.1093/bioinformatics/btz198
PubMed: 30903136

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30903136

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SArKS: de novo discovery of gene expression regulatory motif sites and domains by suffix array kernel smoothing.</title>
<author>
<name sortKey="Wylie, Dennis C" sort="Wylie, Dennis C" uniqKey="Wylie D" first="Dennis C" last="Wylie">Dennis C. Wylie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hofmann, Hans A" sort="Hofmann, Hans A" uniqKey="Hofmann H" first="Hans A" last="Hofmann">Hans A. Hofmann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zemelman, Boris V" sort="Zemelman, Boris V" uniqKey="Zemelman B" first="Boris V" last="Zemelman">Boris V. Zemelman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30903136</idno>
<idno type="pmid">30903136</idno>
<idno type="doi">10.1093/bioinformatics/btz198</idno>
<idno type="wicri:Area/PubMed/Corpus">000599</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000599</idno>
<idno type="wicri:Area/PubMed/Curation">000599</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000599</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SArKS: de novo discovery of gene expression regulatory motif sites and domains by suffix array kernel smoothing.</title>
<author>
<name sortKey="Wylie, Dennis C" sort="Wylie, Dennis C" uniqKey="Wylie D" first="Dennis C" last="Wylie">Dennis C. Wylie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hofmann, Hans A" sort="Hofmann, Hans A" uniqKey="Hofmann H" first="Hans A" last="Hofmann">Hans A. Hofmann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zemelman, Boris V" sort="Zemelman, Boris V" uniqKey="Zemelman B" first="Boris V" last="Zemelman">Boris V. Zemelman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Bioinformatics (Oxford, England)</title>
<idno type="eISSN">1367-4811</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We set out to develop an algorithm that can mine differential gene expression data to identify candidate cell type-specific DNA regulatory sequences. Differential expression is usually quantified as a continuous score-fold-change, test-statistic, P-value-comparing biological classes. Unlike existing approaches, our de novo strategy, termed SArKS, applies non-parametric kernel smoothing to uncover promoter motif sites that correlate with elevated differential expression scores. SArKS detects motif k-mers by smoothing sequence scores over sequence similarity. A second round of smoothing over spatial proximity reveals multi-motif domains (MMDs). Discovered motif sites can then be merged or extended based on adjacency within MMDs. False positive rates are estimated and controlled by permutation testing.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">30903136</PMID>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1367-4811</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>35</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2019</Year>
<Month>Oct</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Bioinformatics (Oxford, England)</Title>
<ISOAbbreviation>Bioinformatics</ISOAbbreviation>
</Journal>
<ArticleTitle>SArKS: de novo discovery of gene expression regulatory motif sites and domains by suffix array kernel smoothing.</ArticleTitle>
<Pagination>
<MedlinePgn>3944-3952</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/bioinformatics/btz198</ELocationID>
<Abstract>
<AbstractText Label="MOTIVATION" NlmCategory="BACKGROUND">We set out to develop an algorithm that can mine differential gene expression data to identify candidate cell type-specific DNA regulatory sequences. Differential expression is usually quantified as a continuous score-fold-change, test-statistic, P-value-comparing biological classes. Unlike existing approaches, our de novo strategy, termed SArKS, applies non-parametric kernel smoothing to uncover promoter motif sites that correlate with elevated differential expression scores. SArKS detects motif k-mers by smoothing sequence scores over sequence similarity. A second round of smoothing over spatial proximity reveals multi-motif domains (MMDs). Discovered motif sites can then be merged or extended based on adjacency within MMDs. False positive rates are estimated and controlled by permutation testing.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We applied SArKS to published gene expression data representing distinct neocortical neuron classes in Mus musculus and interneuron developmental states in Homo sapiens. When benchmarked against several existing algorithms using a cross-validation procedure, SArKS identified larger motif sets that formed the basis for regression models with higher correlative power.</AbstractText>
<AbstractText Label="AVAILABILITY AND IMPLEMENTATION" NlmCategory="METHODS">https://github.com/denniscwylie/sarks.</AbstractText>
<AbstractText Label="SUPPLEMENTARY INFORMATION" NlmCategory="BACKGROUND">Supplementary data are available at Bioinformatics online.</AbstractText>
<CopyrightInformation>© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wylie</LastName>
<ForeName>Dennis C</ForeName>
<Initials>DC</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hofmann</LastName>
<ForeName>Hans A</ForeName>
<Initials>HA</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zemelman</LastName>
<ForeName>Boris V</ForeName>
<Initials>BV</Initials>
<AffiliationInfo>
<Affiliation>Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Neuroscience, University of Texas at Austin, Austin, TX, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Learning and Memory, University of Texas at Austin, Austin, TX, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Bioinformatics</MedlineTA>
<NlmUniqueID>9808944</NlmUniqueID>
<ISSNLinking>1367-4803</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>03</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30903136</ArticleId>
<ArticleId IdType="pii">5418797</ArticleId>
<ArticleId IdType="doi">10.1093/bioinformatics/btz198</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000599 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000599 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30903136
   |texte=   SArKS: de novo discovery of gene expression regulatory motif sites and domains by suffix array kernel smoothing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:30903136" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021