Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Kevlar: A Mapping-Free Framework for Accurate Discovery of De Novo Variants.

Identifieur interne : 000463 ( PubMed/Curation ); précédent : 000462; suivant : 000464

Kevlar: A Mapping-Free Framework for Accurate Discovery of De Novo Variants.

Auteurs : Daniel S. Standage [États-Unis] ; C Titus Brown [États-Unis] ; Fereydoun Hormozdiari [États-Unis]

Source :

RBID : pubmed:31377530

Abstract

De novo genetic variants are an important source of causative variation in complex genetic disorders. Many methods for variant discovery rely on mapping reads to a reference genome, detecting numerous inherited variants irrelevant to the phenotype of interest. To distinguish between inherited and de novo variation, sequencing of families (parents and siblings) is commonly pursued. However, standard mapping-based approaches tend to have a high false-discovery rate for de novo variant prediction. Kevlar is a mapping-free method for de novo variant discovery, based on direct comparison of sequences between related individuals. Kevlar identifies high-abundance k-mers unique to the individual of interest. Reads containing these k-mers are partitioned into disjoint sets by shared k-mer content for variant calling, and preliminary variant predictions are sorted using a probabilistic score. We evaluated Kevlar on simulated and real datasets, demonstrating its ability to detect both de novo single-nucleotide variants and indels with high accuracy.

DOI: 10.1016/j.isci.2019.07.032
PubMed: 31377530

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31377530

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Kevlar: A Mapping-Free Framework for Accurate Discovery of De Novo Variants.</title>
<author>
<name sortKey="Standage, Daniel S" sort="Standage, Daniel S" uniqKey="Standage D" first="Daniel S" last="Standage">Daniel S. Standage</name>
<affiliation wicri:level="1">
<nlm:affiliation>Population Health and Reproduction, University of California, Davis, USA. Electronic address: daniel.standage@nbacc.dhs.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Population Health and Reproduction, University of California, Davis</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Brown, C Titus" sort="Brown, C Titus" uniqKey="Brown C" first="C Titus" last="Brown">C Titus Brown</name>
<affiliation wicri:level="1">
<nlm:affiliation>Population Health and Reproduction, University of California, Davis, USA; Genome Center, University of California, Davis, USA. Electronic address: ctbrown@ucdavis.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Population Health and Reproduction, University of California, Davis, USA; Genome Center, University of California, Davis</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hormozdiari, Fereydoun" sort="Hormozdiari, Fereydoun" uniqKey="Hormozdiari F" first="Fereydoun" last="Hormozdiari">Fereydoun Hormozdiari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Genome Center, University of California, Davis, USA; MIND Institute, University of California, Davis, USA; Biochemistry and Molecular Medicine, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA. Electronic address: fhormozd@ucdavis.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genome Center, University of California, Davis, USA; MIND Institute, University of California, Davis, USA; Biochemistry and Molecular Medicine, University of California, Davis, 1 Shields Avenue, Davis, CA 95616</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31377530</idno>
<idno type="pmid">31377530</idno>
<idno type="doi">10.1016/j.isci.2019.07.032</idno>
<idno type="wicri:Area/PubMed/Corpus">000463</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000463</idno>
<idno type="wicri:Area/PubMed/Curation">000463</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000463</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Kevlar: A Mapping-Free Framework for Accurate Discovery of De Novo Variants.</title>
<author>
<name sortKey="Standage, Daniel S" sort="Standage, Daniel S" uniqKey="Standage D" first="Daniel S" last="Standage">Daniel S. Standage</name>
<affiliation wicri:level="1">
<nlm:affiliation>Population Health and Reproduction, University of California, Davis, USA. Electronic address: daniel.standage@nbacc.dhs.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Population Health and Reproduction, University of California, Davis</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Brown, C Titus" sort="Brown, C Titus" uniqKey="Brown C" first="C Titus" last="Brown">C Titus Brown</name>
<affiliation wicri:level="1">
<nlm:affiliation>Population Health and Reproduction, University of California, Davis, USA; Genome Center, University of California, Davis, USA. Electronic address: ctbrown@ucdavis.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Population Health and Reproduction, University of California, Davis, USA; Genome Center, University of California, Davis</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hormozdiari, Fereydoun" sort="Hormozdiari, Fereydoun" uniqKey="Hormozdiari F" first="Fereydoun" last="Hormozdiari">Fereydoun Hormozdiari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Genome Center, University of California, Davis, USA; MIND Institute, University of California, Davis, USA; Biochemistry and Molecular Medicine, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA. Electronic address: fhormozd@ucdavis.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genome Center, University of California, Davis, USA; MIND Institute, University of California, Davis, USA; Biochemistry and Molecular Medicine, University of California, Davis, 1 Shields Avenue, Davis, CA 95616</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">iScience</title>
<idno type="eISSN">2589-0042</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">De novo genetic variants are an important source of causative variation in complex genetic disorders. Many methods for variant discovery rely on mapping reads to a reference genome, detecting numerous inherited variants irrelevant to the phenotype of interest. To distinguish between inherited and de novo variation, sequencing of families (parents and siblings) is commonly pursued. However, standard mapping-based approaches tend to have a high false-discovery rate for de novo variant prediction. Kevlar is a mapping-free method for de novo variant discovery, based on direct comparison of sequences between related individuals. Kevlar identifies high-abundance k-mers unique to the individual of interest. Reads containing these k-mers are partitioned into disjoint sets by shared k-mer content for variant calling, and preliminary variant predictions are sorted using a probabilistic score. We evaluated Kevlar on simulated and real datasets, demonstrating its ability to detect both de novo single-nucleotide variants and indels with high accuracy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31377530</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2589-0042</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<PubDate>
<Year>2019</Year>
<Month>Aug</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>iScience</Title>
<ISOAbbreviation>iScience</ISOAbbreviation>
</Journal>
<ArticleTitle>Kevlar: A Mapping-Free Framework for Accurate Discovery of De Novo Variants.</ArticleTitle>
<Pagination>
<MedlinePgn>28-36</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S2589-0042(19)30259-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.isci.2019.07.032</ELocationID>
<Abstract>
<AbstractText>De novo genetic variants are an important source of causative variation in complex genetic disorders. Many methods for variant discovery rely on mapping reads to a reference genome, detecting numerous inherited variants irrelevant to the phenotype of interest. To distinguish between inherited and de novo variation, sequencing of families (parents and siblings) is commonly pursued. However, standard mapping-based approaches tend to have a high false-discovery rate for de novo variant prediction. Kevlar is a mapping-free method for de novo variant discovery, based on direct comparison of sequences between related individuals. Kevlar identifies high-abundance k-mers unique to the individual of interest. Reads containing these k-mers are partitioned into disjoint sets by shared k-mer content for variant calling, and preliminary variant predictions are sorted using a probabilistic score. We evaluated Kevlar on simulated and real datasets, demonstrating its ability to detect both de novo single-nucleotide variants and indels with high accuracy.</AbstractText>
<CopyrightInformation>Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Standage</LastName>
<ForeName>Daniel S</ForeName>
<Initials>DS</Initials>
<AffiliationInfo>
<Affiliation>Population Health and Reproduction, University of California, Davis, USA. Electronic address: daniel.standage@nbacc.dhs.gov.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>C Titus</ForeName>
<Initials>CT</Initials>
<AffiliationInfo>
<Affiliation>Population Health and Reproduction, University of California, Davis, USA; Genome Center, University of California, Davis, USA. Electronic address: ctbrown@ucdavis.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hormozdiari</LastName>
<ForeName>Fereydoun</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Genome Center, University of California, Davis, USA; MIND Institute, University of California, Davis, USA; Biochemistry and Molecular Medicine, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA. Electronic address: fhormozd@ucdavis.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HG007513</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>iScience</MedlineTA>
<NlmUniqueID>101724038</NlmUniqueID>
<ISSNLinking>2589-0042</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bioinformatics</Keyword>
<Keyword MajorTopicYN="N">Biological Sciences</Keyword>
<Keyword MajorTopicYN="N">Genetics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31377530</ArticleId>
<ArticleId IdType="pii">S2589-0042(19)30259-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.isci.2019.07.032</ArticleId>
<ArticleId IdType="pmc">PMC6682328</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2009 Jul;19(7):1270-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19447966</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2017 Oct 19;171(3):710-722.e12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28965761</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Eur J Hum Genet. 2017 Feb;25(2):227-233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27876817</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2016 May;34(5):525-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27043002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods. 2017 Oct 1;129:3-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28583483</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Elife. 2018 Jun 13;7:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29897334</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2014 Jun 26;15(6):R84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24970577</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Gen Psychiatry. 2011 Nov;68(11):1095-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21727249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(2):e11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25404127</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>iScience. 2019 Aug 30;18:20-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31352182</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2014 Nov 13;515(7526):216-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25363768</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2010 Nov;20(11):1613-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805290</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2016 Sep 1;32(17):i538-i544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27587672</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2012 Apr 04;485(7397):246-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22495309</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2012 Sep 15;28(18):i333-i339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22962449</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2014 Oct;11(10):1033-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25128977</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2012;13(3):R22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22452995</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Genet. 2010 Jun;11(6):446-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20479774</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 May 22;115(21):5516-5521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29735690</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2014 Feb 13;506(7487):179-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24463507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Genet. 2013 Oct;29(10):575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23684843</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2012 Oct 1;28(19):2520-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22908215</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2017 Jan;14(1):65-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27892959</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2015 May 1;31(9):1375-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25535243</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2016 Nov 15;32(22):3492-3494</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27423894</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2014 May;32(5):462-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24752080</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Genet. 2012 Jul 18;13(8):565-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22805709</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2013 Mar 1;29(5):652-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23325618</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>F1000Res. 2015 Sep 25;4:900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26535114</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Jun 13;498(7453):220-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23665959</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Hum Genet. 2016 Jan 7;98(1):58-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26749308</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2013 May 16;14:160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23679007</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2009 Nov 1;25(21):2865-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561018</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2011 Mar 15;27(6):764-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217122</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2018 May;50(5):727-736</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29700473</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2012 Jan 08;44(2):226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22231483</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2009 Oct 8;461(7265):747-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812666</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2019 Feb 1;35(3):415-420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30032192</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Gen Psychiatry. 1999 Feb;56(2):162-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10025441</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000463 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000463 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:31377530
   |texte=   Kevlar: A Mapping-Free Framework for Accurate Discovery of De Novo Variants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:31377530" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021