Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection.

Identifieur interne : 000242 ( PubMed/Curation ); précédent : 000241; suivant : 000243

Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection.

Auteurs : Enya Qing [États-Unis] ; Michael Hantak [États-Unis] ; Stanley Perlman [États-Unis] ; Tom Gallagher [États-Unis]

Source :

RBID : pubmed:32047128

Abstract

Coronaviruses (CoVs) are common human and animal pathogens that can transmit zoonotically and cause severe respiratory disease syndromes. CoV infection requires spike proteins, which bind viruses to host cell receptors and catalyze virus-cell membrane fusion. Several CoV strains have spike proteins with two receptor-binding domains, an S1A that engages host sialic acids and an S1B that recognizes host transmembrane proteins. As this bivalent binding may enable broad zoonotic CoV infection, we aimed to identify roles for each receptor in distinct infection stages. Focusing on two betacoronaviruses, murine JHM-CoV and human Middle East respiratory syndrome coronavirus (MERS-CoV), we found that virus particle binding to cells was mediated by sialic acids; however, the transmembrane protein receptors were required for a subsequent virus infection. These results favored a two-step process in which viruses first adhere to sialic acids and then require subsequent engagement with protein receptors during infectious cell entry. However, sialic acids sufficiently facilitated the later stages of virus spread through cell-cell membrane fusion, without requiring protein receptors. This virus spread in the absence of the prototype protein receptors was increased by adaptive S1A mutations. Overall, these findings reveal roles for sialic acids in virus-cell binding, viral spike protein-directed cell-cell fusion, and resultant spread of CoV infections.IMPORTANCE CoVs can transmit from animals to humans to cause serious disease. This zoonotic transmission uses spike proteins, which bind CoVs to cells with two receptor-binding domains. Here, we identified the roles for the two binding processes in the CoV infection process. Binding to sialic acids promoted infection and also supported the intercellular expansion of CoV infections through syncytial development. Adaptive mutations in the sialic acid-binding spike domains increased the intercellular expansion process. These findings raise the possibility that the lectin-like properties of many CoVs contribute to facile zoonotic transmission and intercellular spread within infected organisms.

DOI: 10.1128/mBio.02764-19
PubMed: 32047128

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32047128

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection.</title>
<author>
<name sortKey="Qing, Enya" sort="Qing, Enya" uniqKey="Qing E" first="Enya" last="Qing">Enya Qing</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hantak, Michael" sort="Hantak, Michael" uniqKey="Hantak M" first="Michael" last="Hantak">Michael Hantak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Perlman, Stanley" sort="Perlman, Stanley" uniqKey="Perlman S" first="Stanley" last="Perlman">Stanley Perlman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, Tom" sort="Gallagher, Tom" uniqKey="Gallagher T" first="Tom" last="Gallagher">Tom Gallagher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA tgallag@luc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32047128</idno>
<idno type="pmid">32047128</idno>
<idno type="doi">10.1128/mBio.02764-19</idno>
<idno type="wicri:Area/PubMed/Corpus">000242</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000242</idno>
<idno type="wicri:Area/PubMed/Curation">000242</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000242</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection.</title>
<author>
<name sortKey="Qing, Enya" sort="Qing, Enya" uniqKey="Qing E" first="Enya" last="Qing">Enya Qing</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hantak, Michael" sort="Hantak, Michael" uniqKey="Hantak M" first="Michael" last="Hantak">Michael Hantak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Perlman, Stanley" sort="Perlman, Stanley" uniqKey="Perlman S" first="Stanley" last="Perlman">Stanley Perlman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, Tom" sort="Gallagher, Tom" uniqKey="Gallagher T" first="Tom" last="Gallagher">Tom Gallagher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA tgallag@luc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronaviruses (CoVs) are common human and animal pathogens that can transmit zoonotically and cause severe respiratory disease syndromes. CoV infection requires spike proteins, which bind viruses to host cell receptors and catalyze virus-cell membrane fusion. Several CoV strains have spike proteins with two receptor-binding domains, an S1A that engages host sialic acids and an S1B that recognizes host transmembrane proteins. As this bivalent binding may enable broad zoonotic CoV infection, we aimed to identify roles for each receptor in distinct infection stages. Focusing on two betacoronaviruses, murine JHM-CoV and human Middle East respiratory syndrome coronavirus (MERS-CoV), we found that virus particle binding to cells was mediated by sialic acids; however, the transmembrane protein receptors were required for a subsequent virus infection. These results favored a two-step process in which viruses first adhere to sialic acids and then require subsequent engagement with protein receptors during infectious cell entry. However, sialic acids sufficiently facilitated the later stages of virus spread through cell-cell membrane fusion, without requiring protein receptors. This virus spread in the absence of the prototype protein receptors was increased by adaptive S1A mutations. Overall, these findings reveal roles for sialic acids in virus-cell binding, viral spike protein-directed cell-cell fusion, and resultant spread of CoV infections.
<b>IMPORTANCE</b>
CoVs can transmit from animals to humans to cause serious disease. This zoonotic transmission uses spike proteins, which bind CoVs to cells with two receptor-binding domains. Here, we identified the roles for the two binding processes in the CoV infection process. Binding to sialic acids promoted infection and also supported the intercellular expansion of CoV infections through syncytial development. Adaptive mutations in the sialic acid-binding spike domains increased the intercellular expansion process. These findings raise the possibility that the lectin-like properties of many CoVs contribute to facile zoonotic transmission and intercellular spread within infected organisms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32047128</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e02764-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.02764-19</ELocationID>
<Abstract>
<AbstractText>Coronaviruses (CoVs) are common human and animal pathogens that can transmit zoonotically and cause severe respiratory disease syndromes. CoV infection requires spike proteins, which bind viruses to host cell receptors and catalyze virus-cell membrane fusion. Several CoV strains have spike proteins with two receptor-binding domains, an S1A that engages host sialic acids and an S1B that recognizes host transmembrane proteins. As this bivalent binding may enable broad zoonotic CoV infection, we aimed to identify roles for each receptor in distinct infection stages. Focusing on two betacoronaviruses, murine JHM-CoV and human Middle East respiratory syndrome coronavirus (MERS-CoV), we found that virus particle binding to cells was mediated by sialic acids; however, the transmembrane protein receptors were required for a subsequent virus infection. These results favored a two-step process in which viruses first adhere to sialic acids and then require subsequent engagement with protein receptors during infectious cell entry. However, sialic acids sufficiently facilitated the later stages of virus spread through cell-cell membrane fusion, without requiring protein receptors. This virus spread in the absence of the prototype protein receptors was increased by adaptive S1A mutations. Overall, these findings reveal roles for sialic acids in virus-cell binding, viral spike protein-directed cell-cell fusion, and resultant spread of CoV infections.
<b>IMPORTANCE</b>
CoVs can transmit from animals to humans to cause serious disease. This zoonotic transmission uses spike proteins, which bind CoVs to cells with two receptor-binding domains. Here, we identified the roles for the two binding processes in the CoV infection process. Binding to sialic acids promoted infection and also supported the intercellular expansion of CoV infections through syncytial development. Adaptive mutations in the sialic acid-binding spike domains increased the intercellular expansion process. These findings raise the possibility that the lectin-like properties of many CoVs contribute to facile zoonotic transmission and intercellular spread within infected organisms.</AbstractText>
<CopyrightInformation>Copyright © 2020 Qing et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Qing</LastName>
<ForeName>Enya</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hantak</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Perlman</LastName>
<ForeName>Stanley</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0003-4213-2354</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gallagher</LastName>
<ForeName>Tom</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA tgallag@luc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AI060699</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">membrane fusion</Keyword>
<Keyword MajorTopicYN="Y">sialic acids</Keyword>
<Keyword MajorTopicYN="Y">virus entry</Keyword>
<Keyword MajorTopicYN="Y">virus glycoproteins</Keyword>
<Keyword MajorTopicYN="Y">virus receptors</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32047128</ArticleId>
<ArticleId IdType="pii">mBio.02764-19</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.02764-19</ArticleId>
<ArticleId IdType="pmc">PMC7018658</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2019 Dec;26(12):1151-1157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31792450</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Jan;82(2):755-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18003729</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2019 Jun;26(6):481-489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31160783</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Exp Med Biol. 1993;342:279-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8209743</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2017 Mar 29;91(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28148786</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1997 Apr;71(4):3129-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9060676</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2018 Apr;517:98-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29277291</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2009 Nov 20;284(47):32725-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801669</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Exp Med Biol. 1990;276:385-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1966428</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Jpn J Microbiol. 1976 Jun;20(3):219-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">184329</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19970-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19901337</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Jul;89(14):7202-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25926653</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 1999;144(10):2041-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10550676</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Res. 2017 Jan;27(1):119-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28008928</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Microbes Infect. 2019;8(1):516-530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30938227</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1992 Nov;191(1):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1413526</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1993 Jan;192(1):170-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8390751</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2018 Jan 30;92(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29093093</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Virol. 2016 Sep 29;3(1):237-261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27578435</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 May;79(10):6102-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15857995</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2002 Sep 15;301(1):109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359451</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 Sep 10;274(37):26085-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10473557</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2015;1313:229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25947669</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2014 Nov;12(11):739-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25263223</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Physiol Rev. 2014 Apr;94(2):461-518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24692354</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8508-E8517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28923942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):1011-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1998 Aug;72(8):6838-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9658133</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Int AIDS Soc. 2013 Sep 18;16:18723</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24050252</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2015 Apr 16;202:120-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 1988 Feb;9(2-3):133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2833045</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2019 Jul 11;10(1):3068</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31296843</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2001 Mar;75(6):2792-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11222703</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2017 Mar 8;21(3):356-366</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28279346</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26935699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2018 Jul 27;293(30):11709-11726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29887526</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Dis Child. 1983 Jul;58(7):500-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6307189</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Public Health. 2019 Dec 9;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31831395</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1996 Sep 1;223(1):68-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8806541</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1996 Apr 15;15(8):2020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 2016;96:29-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27712627</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Feb;74(3):1566-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10627571</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Sep;74(17):8127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933723</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 Sep 29;90(20):9114-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27489282</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2004 Mar 19;303(5665):1838-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764886</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3119-E3128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28348219</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1998 May 22;273(21):13047-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9582341</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2010 Nov;84(21):11030-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739537</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Glia. 1989;2(2):85-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2542161</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2681-2690</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30679277</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):114-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26855426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10696-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21670291</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 Dec 16;91(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27733646</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1988 Jun 2;333(6172):426-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3374584</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2017 Mar 13;91(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28100617</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Microbes Infect. 2017 Jun 28;6(6):e60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28655936</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2006 Feb 3;355(5):1143-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16343533</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 2016 Jun;24(6):490-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27012512</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 May;88(10):5209-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24600003</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2012 Nov 20;3(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2016 Oct;23(10):899-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27617430</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2011 Jan;85(2):873-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21068237</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 May;88(9):4953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24554656</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Res. 2013 Aug;23(8):986-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23835475</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Gesamte Virusforsch. 1974;44(3):298-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4365902</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1998 Apr;72(4):3278-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9525655</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1989 Dec;173(2):664-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2556846</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2012 Dec 7;287(50):41931-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23091051</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 May;80(10):4901-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16641281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2014 Feb;95(Pt 2):350-362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24243730</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1991 Aug;183(2):647-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1649505</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2017 Apr 10;8:15092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28393837</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol Methods. 2010 Nov;169(2):365-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709108</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mSphere. 2017 Sep 6;2(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28904995</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1996 Jul;70(7):4683-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8676494</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2012 Jan;8(1):e1002492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22291594</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Apr;89(7):3598-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25589656</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12262-12267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27791014</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lab Invest. 1986 Sep;55(3):318-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3528662</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2019 Feb 21;176(5):1026-1039.e15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30712865</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Exp Med Biol. 1998;440:33-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9782262</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000242 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000242 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32047128
   |texte=   Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:32047128" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021