Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Topological dynamics of the 2015 South Korea MERS-CoV spread-on-contact networks.

Identifieur interne : 000174 ( PubMed/Curation ); précédent : 000173; suivant : 000175

Topological dynamics of the 2015 South Korea MERS-CoV spread-on-contact networks.

Auteurs : Chang Hoon Yang [Corée du Sud] ; Hyejin Jung [Corée du Sud]

Source :

RBID : pubmed:32152361

Abstract

Network analysis to examine infectious contact relations provides an important means to uncover the topologies of individual infectious contact networks. This study aims to investigate the spread of diseases among individuals over contact networks by exploring the 2015 Middle East Respiratory Syndrome (MERS) outbreak in Korea. We present several distinct features of MERS transmission by employing a comprehensive approach in network research to examine both the traced relationship matrix of infected individuals and their bipartite transmission routes among healthcare facilities visited for treatment. The results indicate that a few super-spreaders were more likely to hold certain structural advantages by linking to an exceptional number of other individuals, causing several ongoing transmission events in neighbourhoods without the aid of any intermediary. Thus, the infectious contact network exhibited small-world dynamics characterised by locally clustered contacts exposed to transmission paths via short path lengths. In addition, nosocomial infection analysis shows the pattern of a common-source outbreak followed by secondary person-to-person transmission of the disease. Based on the results, we suggest policy implications related to the redesign of prevention and control strategies against the spread of epidemics.

DOI: 10.1038/s41598-020-61133-9
PubMed: 32152361

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32152361

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Topological dynamics of the 2015 South Korea MERS-CoV spread-on-contact networks.</title>
<author>
<name sortKey="Yang, Chang Hoon" sort="Yang, Chang Hoon" uniqKey="Yang C" first="Chang Hoon" last="Yang">Chang Hoon Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Catholic Kwandong University 24, Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do, 25601, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Catholic Kwandong University 24, Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do, 25601</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jung, Hyejin" sort="Jung, Hyejin" uniqKey="Jung H" first="Hyejin" last="Jung">Hyejin Jung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Korea. hjung@pusan.ac.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32152361</idno>
<idno type="pmid">32152361</idno>
<idno type="doi">10.1038/s41598-020-61133-9</idno>
<idno type="wicri:Area/PubMed/Corpus">000174</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000174</idno>
<idno type="wicri:Area/PubMed/Curation">000174</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000174</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Topological dynamics of the 2015 South Korea MERS-CoV spread-on-contact networks.</title>
<author>
<name sortKey="Yang, Chang Hoon" sort="Yang, Chang Hoon" uniqKey="Yang C" first="Chang Hoon" last="Yang">Chang Hoon Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Catholic Kwandong University 24, Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do, 25601, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Catholic Kwandong University 24, Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do, 25601</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jung, Hyejin" sort="Jung, Hyejin" uniqKey="Jung H" first="Hyejin" last="Jung">Hyejin Jung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Korea. hjung@pusan.ac.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Network analysis to examine infectious contact relations provides an important means to uncover the topologies of individual infectious contact networks. This study aims to investigate the spread of diseases among individuals over contact networks by exploring the 2015 Middle East Respiratory Syndrome (MERS) outbreak in Korea. We present several distinct features of MERS transmission by employing a comprehensive approach in network research to examine both the traced relationship matrix of infected individuals and their bipartite transmission routes among healthcare facilities visited for treatment. The results indicate that a few super-spreaders were more likely to hold certain structural advantages by linking to an exceptional number of other individuals, causing several ongoing transmission events in neighbourhoods without the aid of any intermediary. Thus, the infectious contact network exhibited small-world dynamics characterised by locally clustered contacts exposed to transmission paths via short path lengths. In addition, nosocomial infection analysis shows the pattern of a common-source outbreak followed by secondary person-to-person transmission of the disease. Based on the results, we suggest policy implications related to the redesign of prevention and control strategies against the spread of epidemics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32152361</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Topological dynamics of the 2015 South Korea MERS-CoV spread-on-contact networks.</ArticleTitle>
<Pagination>
<MedlinePgn>4327</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-020-61133-9</ELocationID>
<Abstract>
<AbstractText>Network analysis to examine infectious contact relations provides an important means to uncover the topologies of individual infectious contact networks. This study aims to investigate the spread of diseases among individuals over contact networks by exploring the 2015 Middle East Respiratory Syndrome (MERS) outbreak in Korea. We present several distinct features of MERS transmission by employing a comprehensive approach in network research to examine both the traced relationship matrix of infected individuals and their bipartite transmission routes among healthcare facilities visited for treatment. The results indicate that a few super-spreaders were more likely to hold certain structural advantages by linking to an exceptional number of other individuals, causing several ongoing transmission events in neighbourhoods without the aid of any intermediary. Thus, the infectious contact network exhibited small-world dynamics characterised by locally clustered contacts exposed to transmission paths via short path lengths. In addition, nosocomial infection analysis shows the pattern of a common-source outbreak followed by secondary person-to-person transmission of the disease. Based on the results, we suggest policy implications related to the redesign of prevention and control strategies against the spread of epidemics.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Chang Hoon</ForeName>
<Initials>CH</Initials>
<AffiliationInfo>
<Affiliation>Catholic Kwandong University 24, Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do, 25601, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jung</LastName>
<ForeName>Hyejin</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Korea. hjung@pusan.ac.kr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32152361</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-020-61133-9</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-020-61133-9</ArticleId>
<ArticleId IdType="pmc">PMC7062829</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mil Med Res. 2017 Oct 27;4(1):32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29502517</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Chemother. 2016 Jun;48(2):147-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27433389</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2015 Oct 14;18(4):398-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26468744</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 2):066112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11736241</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Hosp Infect. 2017 Feb;95(2):207-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28153558</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2005 Nov 17;438(7066):355-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16292310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Prev Vet Med. 2016 Apr 1;126:94-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26883965</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2016 Sep 3;388(10048):994-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27402381</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Scientometrics. 2010 Aug;84(2):523-538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585380</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2019 May 14;9(1):7385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31089148</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2015 Jun 13;385(9985):2349-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26088634</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J R Soc Interface. 2005 Sep 22;2(4):295-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16849187</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Theor Popul Biol. 1978 Dec;14(3):338-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">751264</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2337-2342</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28193880</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Infect Dis. 2011 Aug;15(8):e510-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21737332</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1998 Jun 4;393(6684):440-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9623998</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2015 Jul 21;6:7723</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26194875</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Dyn. 2010 Sep;4(5):478-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22877143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Soc Networks. 1993 Mar;15(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12286699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1999 Oct 15;286(5439):509-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521342</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Epidemiol. 2004 Oct 15;160(8):719-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466494</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000174 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000174 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32152361
   |texte=   Topological dynamics of the 2015 South Korea MERS-CoV spread-on-contact networks.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:32152361" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021