Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Application of a Risk Analysis Tool to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Outbreak in Saudi Arabia.

Identifieur interne : 000162 ( PubMed/Curation ); précédent : 000161; suivant : 000163

Application of a Risk Analysis Tool to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Outbreak in Saudi Arabia.

Auteurs : Xin Chen [Australie] ; Abrar A. Chughtai [Australie] ; Chandini R. Macintyre [Australie]

Source :

RBID : pubmed:32170774

Abstract

The Grunow-Finke assessment tool (GFT) is an accepted scoring system for determining likelihood of an outbreak being unnatural in origin. Considering its high specificity but low sensitivity, a modified Grunow-Finke tool (mGFT) has been developed with improved sensitivity. The mGFT has been validated against some past disease outbreaks, but it has not been applied to ongoing outbreaks. This study is aimed to score the outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia using both the original GFT and mGFT. The publicly available data on human cases of MERS-CoV infections reported in Saudi Arabia (2012-2018) were sourced from the FluTrackers, World Health Organization, Saudi Ministry of Health, and published literature associated with MERS outbreaks investigations. The risk assessment of MERS-CoV in Saudi Arabia was analyzed using the original GFT and mGFT criteria, algorithms, and thresholds. The scoring points for each criterion were determined by three researchers to minimize the subjectivity. The results showed 40 points of total possible 54 points using the original GFT (likelihood: 74%), and 40 points of a total possible 60 points (likelihood: 67%) using the mGFT, both tools indicating a high likelihood that human MERS-CoV in Saudi Arabia is unnatural in origin. The findings simply flag unusual patterns in this outbreak, but do not prove unnatural etiology. Proof of bioattacks can only be obtained by law enforcement and intelligence agencies. This study demonstrated the value and flexibility of the mGFT in assessing and predicting the risk for an ongoing outbreak with simple criteria.

DOI: 10.1111/risa.13472
PubMed: 32170774

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32170774

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Application of a Risk Analysis Tool to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Outbreak in Saudi Arabia.</title>
<author>
<name sortKey="Chen, Xin" sort="Chen, Xin" uniqKey="Chen X" first="Xin" last="Chen">Xin Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chughtai, Abrar A" sort="Chughtai, Abrar A" uniqKey="Chughtai A" first="Abrar A" last="Chughtai">Abrar A. Chughtai</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Macintyre, Chandini R" sort="Macintyre, Chandini R" uniqKey="Macintyre C" first="Chandini R" last="Macintyre">Chandini R. Macintyre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32170774</idno>
<idno type="pmid">32170774</idno>
<idno type="doi">10.1111/risa.13472</idno>
<idno type="wicri:Area/PubMed/Corpus">000162</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000162</idno>
<idno type="wicri:Area/PubMed/Curation">000162</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000162</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Application of a Risk Analysis Tool to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Outbreak in Saudi Arabia.</title>
<author>
<name sortKey="Chen, Xin" sort="Chen, Xin" uniqKey="Chen X" first="Xin" last="Chen">Xin Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chughtai, Abrar A" sort="Chughtai, Abrar A" uniqKey="Chughtai A" first="Abrar A" last="Chughtai">Abrar A. Chughtai</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Macintyre, Chandini R" sort="Macintyre, Chandini R" uniqKey="Macintyre C" first="Chandini R" last="Macintyre">Chandini R. Macintyre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Risk analysis : an official publication of the Society for Risk Analysis</title>
<idno type="eISSN">1539-6924</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Grunow-Finke assessment tool (GFT) is an accepted scoring system for determining likelihood of an outbreak being unnatural in origin. Considering its high specificity but low sensitivity, a modified Grunow-Finke tool (mGFT) has been developed with improved sensitivity. The mGFT has been validated against some past disease outbreaks, but it has not been applied to ongoing outbreaks. This study is aimed to score the outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia using both the original GFT and mGFT. The publicly available data on human cases of MERS-CoV infections reported in Saudi Arabia (2012-2018) were sourced from the FluTrackers, World Health Organization, Saudi Ministry of Health, and published literature associated with MERS outbreaks investigations. The risk assessment of MERS-CoV in Saudi Arabia was analyzed using the original GFT and mGFT criteria, algorithms, and thresholds. The scoring points for each criterion were determined by three researchers to minimize the subjectivity. The results showed 40 points of total possible 54 points using the original GFT (likelihood: 74%), and 40 points of a total possible 60 points (likelihood: 67%) using the mGFT, both tools indicating a high likelihood that human MERS-CoV in Saudi Arabia is unnatural in origin. The findings simply flag unusual patterns in this outbreak, but do not prove unnatural etiology. Proof of bioattacks can only be obtained by law enforcement and intelligence agencies. This study demonstrated the value and flexibility of the mGFT in assessing and predicting the risk for an ongoing outbreak with simple criteria.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32170774</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1539-6924</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Risk analysis : an official publication of the Society for Risk Analysis</Title>
<ISOAbbreviation>Risk Anal.</ISOAbbreviation>
</Journal>
<ArticleTitle>Application of a Risk Analysis Tool to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Outbreak in Saudi Arabia.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/risa.13472</ELocationID>
<Abstract>
<AbstractText>The Grunow-Finke assessment tool (GFT) is an accepted scoring system for determining likelihood of an outbreak being unnatural in origin. Considering its high specificity but low sensitivity, a modified Grunow-Finke tool (mGFT) has been developed with improved sensitivity. The mGFT has been validated against some past disease outbreaks, but it has not been applied to ongoing outbreaks. This study is aimed to score the outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia using both the original GFT and mGFT. The publicly available data on human cases of MERS-CoV infections reported in Saudi Arabia (2012-2018) were sourced from the FluTrackers, World Health Organization, Saudi Ministry of Health, and published literature associated with MERS outbreaks investigations. The risk assessment of MERS-CoV in Saudi Arabia was analyzed using the original GFT and mGFT criteria, algorithms, and thresholds. The scoring points for each criterion were determined by three researchers to minimize the subjectivity. The results showed 40 points of total possible 54 points using the original GFT (likelihood: 74%), and 40 points of a total possible 60 points (likelihood: 67%) using the mGFT, both tools indicating a high likelihood that human MERS-CoV in Saudi Arabia is unnatural in origin. The findings simply flag unusual patterns in this outbreak, but do not prove unnatural etiology. Proof of bioattacks can only be obtained by law enforcement and intelligence agencies. This study demonstrated the value and flexibility of the mGFT in assessing and predicting the risk for an ongoing outbreak with simple criteria.</AbstractText>
<CopyrightInformation>© 2020 Society for Risk Analysis.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9905-2307</Identifier>
<AffiliationInfo>
<Affiliation>Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chughtai</LastName>
<ForeName>Abrar A</ForeName>
<Initials>AA</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-4203-7891</Identifier>
<AffiliationInfo>
<Affiliation>School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>MacIntyre</LastName>
<ForeName>Chandini R</ForeName>
<Initials>CR</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-3060-0555</Identifier>
<AffiliationInfo>
<Affiliation>Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Public Service and Community Solutions, Arizona State University, Tempe, AZ, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Health Solutions, Arizona State University, Tempe, AZ, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>APP1107393</GrantID>
<Agency>National Health and Medical Research Council</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Risk Anal</MedlineTA>
<NlmUniqueID>8109978</NlmUniqueID>
<ISSNLinking>0272-4332</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Algorithm</Keyword>
<Keyword MajorTopicYN="N">MERS-CoV</Keyword>
<Keyword MajorTopicYN="N">bioterrorism</Keyword>
<Keyword MajorTopicYN="N">outbreak investigation</Keyword>
<Keyword MajorTopicYN="N">risk analysis</Keyword>
<Keyword MajorTopicYN="N">scoring system</Keyword>
<Keyword MajorTopicYN="N">unnatural epidemic</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>02</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32170774</ArticleId>
<ArticleId IdType="doi">10.1111/risa.13472</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERERNCES</Title>
<Reference>
<Citation>Ajisegiri, W. S., Chughtai, A. A., & MacIntyre, C. R. (2018). A risk analysis approach to prioritizing epidemics: Ebola virus disease in West Africa as a case study. Risk Analysis, 38(3), 429-441. https://doi.org/10.1111/risa.12876</Citation>
</Reference>
<Reference>
<Citation>Arms Control Association. (2018). Biological weapons convention signatories and states-parties. Retrieved from https://www.armscontrol.org/factsheets/bwcsig</Citation>
</Reference>
<Reference>
<Citation>Assiri, A., McGeer, A., Perl, T. M., Price, C. S., Al-Rabeeah, A. A., Cummings, D. A., … Team, K. M.-C. I. (2013). Hospital outbreak of Middle East respiratory syndrome coronavirus. New England Journal of Medicine, 369(5), 407-416. https://doi.org/10.1056/NEJMoa1306742</Citation>
</Reference>
<Reference>
<Citation>Azhar, E. I., El-Kafrawy, S. A., Farraj, S. A., Hassan, A. M., Al-Saeed, M. S., Hashem, A. M., & Madani, T. A. (2014). Evidence for camel-to-human transmission of MERS coronavirus. New England Journal of Medicine, 370(26), 2499-2505. https://doi.org/10.1056/NEJMoa1401505</Citation>
</Reference>
<Reference>
<Citation>Campos, G. S., Bandeira, A. C., & Sardi, S. I. (2015). Zika virus outbreak, Bahia, Brazil. Emerging Infectious Diseases, 21(10), 1885-1886. https://doi.org/10.3201/eid2110.150847</Citation>
</Reference>
<Reference>
<Citation>CDC. (2018). Bioterrorism agents/diseases. Retrieved from http://emergency.cdc.gov/agent/agentlist.asp</Citation>
</Reference>
<Reference>
<Citation>Chen, X., Chughtai, A. A., Dyda, A., & MacIntyre, C. R. (2017). Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea. Emerging Microbes & Infections, 6, e51. https://doi.org/10.1038/emi.2017.40</Citation>
</Reference>
<Reference>
<Citation>Chen, X., Chughtai, A. A., & MacIntyre, C. R. (2017). A systematic review of risk analysis tools for differentiating unnatural from natural epidemics. Military Medicine, 182(11), e1827-e1835. https://doi.org/10.7205/MILMED-D-17-00090</Citation>
</Reference>
<Reference>
<Citation>Chen, X., Chughtai, A. A., & MacIntyre, C. R. (2018). Recalibration of the Grunow-Finke assessment tool to improve performance in detecting unnatural epidemics. Risk Analysis, [Epub ahead of print], 39(7), 1-11.</Citation>
</Reference>
<Reference>
<Citation>Cotten, M., Lam, T. T., Watson, S. J., Palser, A. L., Petrova, V., Grant, P., … Nastouli, E. (2013). Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus. Emerging Infectious Diseases, 19(5), 736-742B. https://doi.org/10.3201/eid1905.130057</Citation>
</Reference>
<Reference>
<Citation>Cui, J., Eden, J.-S., Holmes, E. C., & Wang, L.-F. (2013). Adaptive evolution of bat dipeptidyl peptidase 4 (dpp4): Implications for the origin and emergence of Middle East respiratory syndrome coronavirus. Virology Journal, 10(1), 304.</Citation>
</Reference>
<Reference>
<Citation>Dembek, Z. F., Pavlin, M., & Kortepeter, M. G. (2007). Epidemiology of biowarfare and bioterrorism. Textbook of military medicine: Medical aspects of biological warfare. Published by the Office of the Surgeon General, US Army. Washington DC: A TMM Publications, Borden Institute, Walter Reed Army Medical Center, 39-68.</Citation>
</Reference>
<Reference>
<Citation>Dudas, G., Carvalho, L. M., Rambaut, A., & Bedford, T. (2018). MERS-CoV spillover at the camel-human interface. eLife, 7, e31257. https://doi.org/10.7554/eLife.31257</Citation>
</Reference>
<Reference>
<Citation>European Centre for Disease Prevention and Control. (2017). Outbreak of plague in Madagascar, 2017. Retrieved from https://ecdc.europa.eu/sites/portal/files/documents/Plague-Madagascar-Oct-2017.pdf</Citation>
</Reference>
<Reference>
<Citation>FluTrackers. (2012). Jordan - Cluster of approximately 12 people with acute pneumonia type illness, 2 fatalities - April 20 - May 2012 - Novel coronavirus confirmed. Retrieved from https://flutrackers.com/forum/forum/novel-coronavirus-ncov-mers-2012-2014/jordan-coronavirus/127145-jordan-cluster-of-approximately-13-people-with-acute-pneumonia-type-illness-2-fatalities-april-20-may-2012-novel-coronavirus-confirmed/page9?amp;postcount=133</Citation>
</Reference>
<Reference>
<Citation>FluTrackers. (2018). 2012-2018 case list of MoH/WHO novel coronavirus MERS nCoV announced cases. Retrieved from https://flutrackers.com/forum/forum/novel-coronavirus-ncov-mers-2012-2014/146270-2012-2018-case-list-of-moh-who-novel-coronavirus-mers-ncov-announced-cases</Citation>
</Reference>
<Reference>
<Citation>Gardner, L. M., Chughtai, A. A., & MacIntyre, C. R. (2016). Risk of global spread of Middle East respiratory syndrome coronavirus (MERS-CoV) via the air transport network. Journal of Travel Medicine, 23(6). https://doi.org/10.1093/jtm/taw063</Citation>
</Reference>
<Reference>
<Citation>Gardner, L. M., & MacIntyre, C. R. (2014). Unanswered questions about the Middle East respiratory syndrome coronavirus (MERS-CoV). BMC Research Notes, 7, 358. https://doi.org/10.1186/1756-0500-7-358</Citation>
</Reference>
<Reference>
<Citation>Gardner, L. M., Rey, D., Heywood, A. E., Toms, R., Wood, J., Travis Waller, S., & Raina MacIntyre, C. (2014). A scenario-based evaluation of the Middle East respiratory syndrome coronavirus and the Hajj. Risk Anal, 34(8), 1391-1400. https://doi.org/10.1111/risa.12253</Citation>
</Reference>
<Reference>
<Citation>Global Engage. (2017). The big list of synthetic biology companies and investors. Retrieved from http://www.global-engage.com/life-science/list-of-synthetic-biology-companies-and-investors/</Citation>
</Reference>
<Reference>
<Citation>Global Research. (2017). Biological warfare: US & Saudis use cholera to kill Yemenis. Retrieved from https://www.globalresearch.ca/biological-warfare-us-saudis-use-cholera-to-kill-yemenis/5601953</Citation>
</Reference>
<Reference>
<Citation>Grunow, R., & Finke, E. J. (2002). A procedure for differentiating between the intentional release of biological warfare agents and natural outbreaks of disease: Its use in analyzing the tularemia outbreak in Kosovo in 1999 and 2000. Clinical Microbiology and Infection, 8(8), 510-521. https://doi.org/10.1046/j.1469-0691.2002.00524.x</Citation>
</Reference>
<Reference>
<Citation>Hemida, M. G., Al-Naeem, A., Perera, R. A., Chin, A. W., Poon, L. L., & Peiris, M. (2015). Lack of Middle East respiratory syndrome coronavirus transmission from infected camels. Emerging Infectious Diseases, 21(4), 699-701. https://doi.org/10.3201/eid2104.141949</Citation>
</Reference>
<Reference>
<Citation>Hummel, S. (2016). The Islamic State and WMD: Assessing the future threat. CTC Sentinel, 9(13), 18-21.</Citation>
</Reference>
<Reference>
<Citation>Johnston, W. R. (2017). Summary of historical attacks using chemical or biological weapons. Retrieved from http://www.johnstonsarchive.net/terrorism/chembioattacks.html</Citation>
</Reference>
<Reference>
<Citation>Kim, J. I., Park, S., Bae, J.-Y., & Park, M.-S. (2019). Evolutionary relationship analysis of Middle East respiratory syndrome coronavirus 4a and 4b protein coding sequences. Journal of Veterinary Science, 20(2), e1.</Citation>
</Reference>
<Reference>
<Citation>Kim, S.-H., Chang, S. Y., Sung, M., Park, J. H., Kim, H. B., Lee, H., … Min, J.-Y. (2016). Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS outbreak units. Clinical Infectious Diseases, 63(3), 363-369.</Citation>
</Reference>
<Reference>
<Citation>Koblentz, G. D. (2017). The de novo synthesis of horsepox virus: Implications for biosecurity and recommendations for preventing the reemergence of smallpox. Health Security, 15(5), 1-9.</Citation>
</Reference>
<Reference>
<Citation>Lu, G., Wang, Q., & Gao, G. F. (2015). Bat-to-human: Spike features determining “host jump” of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends in Microbiology, 23(8), 468-478. https://doi.org/10.1016/j.tim.2015.06.003</Citation>
</Reference>
<Reference>
<Citation>MacIntyre, C. R. (2014). The discrepant epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV). Environment Systems and Decisions, 34(3), 383-390.</Citation>
</Reference>
<Reference>
<Citation>MacIntyre, C. R. (2015a). Biopreparedness in the age of genetically engineered pathogens and open access science: An urgent need for a paradigm shift. Military Medicine, 180(9), 943-949.</Citation>
</Reference>
<Reference>
<Citation>MacIntyre, C. R. (2015b). Re-thinking the ethics of dual-use research of concern on transmissible pathogens. Environment Systems and Decisions, 35(1), 129-132.</Citation>
</Reference>
<Reference>
<Citation>MacIntyre, C. R., & Engells, T. E. (2016). Current biological threats to frontline law enforcement: From the insider threat to DIY bio. Law Enforcement Executive Forum, 16, 25-37.</Citation>
</Reference>
<Reference>
<Citation>MacIntyre, C. R., Engells, T. E., Scotch, M., Heslop, D. J., Gumel, A. B., Poste, G., … Lim, S. (2017). Converging and emerging threats to health security. Environment Systems and Decisions, 38, 198-207.</Citation>
</Reference>
<Reference>
<Citation>Modjarrad, K. (2016). MERS-CoV vaccine candidates in development: The current landscape. Vaccine, 34(26), 2982-2987. https://doi.org/10.1016/j.vaccine.2016.03.104</Citation>
</Reference>
<Reference>
<Citation>Modjarrad, K., Roberts, C. C., Mills, K. T., Castellano, A. R., Paolino, K., Muthumani, K., … Maslow, J. N. (2019). Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: A phase 1, open-label, single-arm, dose-escalation trial. Lancet Infectious Diseases, 19(9), 1013-1022. https://doi.org/10.1016/s1473-3099(19)30266-x</Citation>
</Reference>
<Reference>
<Citation>Mohd, H. A., Al-Tawfiq, J. A., & Memish, Z. A. (2016). Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir. Virology Journal, 13, 87. https://doi.org/10.1186/s12985-016-0544-0</Citation>
</Reference>
<Reference>
<Citation>Oboho, I. K., Tomczyk, S. M., Al-Asmari, A. M., Banjar, A. A., Al-Mugti, H., Aloraini, M. S., … Madani, T. A. (2015). 2014 MERS-CoV outbreak in Jeddah - A link to health care facilities. New England Journal of Medicine, 372(9), 846-854. https://doi.org/10.1056/NEJMoa1408636</Citation>
</Reference>
<Reference>
<Citation>Public Health Emergency. (2014). US government gain-of-function deliberative process and research funding pause on selected gain-of-function research involving Influenza, MERS, and SARS viruses. Retrieved from https://www.phe.gov/s3/dualuse/Documents/gain-of-function.pdf</Citation>
</Reference>
<Reference>
<Citation>Saudi MoH. (2015). No new corona cases recorded. Retrieved from http://www.moh.gov.sa/en/CCC/PressReleases/Pages/Statistics-2015-12-31-001.aspx</Citation>
</Reference>
<Reference>
<Citation>The Washington Post. (2017). An overview of the tensions between Saudi Arabia and its neighbors. Retrieved from https://www.washingtonpost.com/news/politics/wp/2017/11/09/an-overview-of-the-tensions-between-saudi-arabia-and-its-neighbors/?utm_term=f398dad3d7ec</Citation>
</Reference>
<Reference>
<Citation>Török, T. J., Tauxe, R. V., Wise, R. P., Livengood, J. R., Sokolow, R., Mauvais, S., … Foster, L. R. (1997). A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars. JAMA, 278(5), 389-395.</Citation>
</Reference>
<Reference>
<Citation>Treadwell, T. A., Koo, D., Kuker, K., & Khan, A. S. (2003). Epidemiologic clues to bioterrorism. Public Health Reports, 118(2), 92-98.</Citation>
</Reference>
<Reference>
<Citation>US Army. (1977). US Army activity in the US biological warfare programs: 1942-1977, Volume I. Washington, DC: US Department of the Army.</Citation>
</Reference>
<Reference>
<Citation>Wallinga, J., & Teunis, P. (2004). Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. American Journal of Epidemiology, 160(6), 509-516. https://doi.org/10.1093/aje/kwh255</Citation>
</Reference>
<Reference>
<Citation>Wheat, R. P., Zuckerman, A., & Rantz, L. A. (1951). Infection due to chromobacteria; report of 11 cases. A.M.A. Archives of Internal Medicine, 88(4), 461-466.</Citation>
</Reference>
<Reference>
<Citation>WHO. (2017). Middle East respiratory syndrome covonavirus (MERS-CoV) fact sheet. Retrieved from http://www.who.int/mediacentre/factsheets/mers-cov/en/</Citation>
</Reference>
<Reference>
<Citation>WHO. (2018a). MERS situation update, December 2018. Retrieved from http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-december-2018.html</Citation>
</Reference>
<Reference>
<Citation>WHO. (2018b). SARS (Severe Acute Respiratory Syndrome). Retrieved from http://www.who.int/ith/diseases/sars/en/</Citation>
</Reference>
<Reference>
<Citation>WHO. (2019a). Middle East respiratory syndrome coronavirus (MERS-CoV). Retrieved from http://www.who.int/emergencies/mers-cov/en/</Citation>
</Reference>
<Reference>
<Citation>WHO. (2019b). Smallpox. Retrieved from https://www.who.int/csr/disease/smallpox/en/</Citation>
</Reference>
<Reference>
<Citation>Zaki, A. M., Van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D., & Fouchier, R. A. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine, 367(19), 1814-1820.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000162 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000162 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32170774
   |texte=   Application of a Risk Analysis Tool to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Outbreak in Saudi Arabia.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:32170774" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021