Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards.

Identifieur interne : 000132 ( PubMed/Curation ); précédent : 000131; suivant : 000133

A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards.

Auteurs : Manoj Kumar Satheesan [République populaire de Chine] ; Kwok Wai Mui [République populaire de Chine] ; Ling Tim Wong [République populaire de Chine]

Source :

RBID : pubmed:32211123

Abstract

Aerial dispersion of human exhaled microbial contaminants and subsequent contamination of surfaces is a potential route for infection transmission in hospitals. Most general hospital wards have ventilation systems that drive air and thus contaminants from the patient areas towards the corridors. This study investigates the transport mechanism and deposition patterns of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within a typical six bedded general inpatient ward cubicle through numerical simulation. It demonstrates that both air change and exhaust airflow rates have significant effects on not only the airflow but also the particle distribution within a mechanically ventilated space. Moreover, the location of an infected patient within the ward cubicle is crucial in determining the extent of infection risk to other ward occupants. Hence, it is recommended to provide exhaust grilles in close proximity to a patient, preferably above each patient's bed. To achieve infection prevention and control, high exhaust airflow rate is also suggested. Regardless of the ventilation design, all patients and any surfaces within a ward cubicle should be regularly and thoroughly cleaned and disinfected to remove microbial contamination. The outcome of this study can serve as a source of reference for hospital management to better ventilation design strategies for mitigating the risk of infection.

DOI: 10.1007/s12273-020-0623-4
PubMed: 32211123

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32211123

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards.</title>
<author>
<name sortKey="Satheesan, Manoj Kumar" sort="Satheesan, Manoj Kumar" uniqKey="Satheesan M" first="Manoj Kumar" last="Satheesan">Manoj Kumar Satheesan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mui, Kwok Wai" sort="Mui, Kwok Wai" uniqKey="Mui K" first="Kwok Wai" last="Mui">Kwok Wai Mui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wong, Ling Tim" sort="Wong, Ling Tim" uniqKey="Wong L" first="Ling Tim" last="Wong">Ling Tim Wong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32211123</idno>
<idno type="pmid">32211123</idno>
<idno type="doi">10.1007/s12273-020-0623-4</idno>
<idno type="wicri:Area/PubMed/Corpus">000132</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000132</idno>
<idno type="wicri:Area/PubMed/Curation">000132</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000132</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards.</title>
<author>
<name sortKey="Satheesan, Manoj Kumar" sort="Satheesan, Manoj Kumar" uniqKey="Satheesan M" first="Manoj Kumar" last="Satheesan">Manoj Kumar Satheesan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mui, Kwok Wai" sort="Mui, Kwok Wai" uniqKey="Mui K" first="Kwok Wai" last="Mui">Kwok Wai Mui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wong, Ling Tim" sort="Wong, Ling Tim" uniqKey="Wong L" first="Ling Tim" last="Wong">Ling Tim Wong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Building simulation</title>
<idno type="ISSN">1996-3599</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Aerial dispersion of human exhaled microbial contaminants and subsequent contamination of surfaces is a potential route for infection transmission in hospitals. Most general hospital wards have ventilation systems that drive air and thus contaminants from the patient areas towards the corridors. This study investigates the transport mechanism and deposition patterns of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within a typical six bedded general inpatient ward cubicle through numerical simulation. It demonstrates that both air change and exhaust airflow rates have significant effects on not only the airflow but also the particle distribution within a mechanically ventilated space. Moreover, the location of an infected patient within the ward cubicle is crucial in determining the extent of infection risk to other ward occupants. Hence, it is recommended to provide exhaust grilles in close proximity to a patient, preferably above each patient's bed. To achieve infection prevention and control, high exhaust airflow rate is also suggested. Regardless of the ventilation design, all patients and any surfaces within a ward cubicle should be regularly and thoroughly cleaned and disinfected to remove microbial contamination. The outcome of this study can serve as a source of reference for hospital management to better ventilation design strategies for mitigating the risk of infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32211123</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1996-3599</ISSN>
<JournalIssue CitedMedium="Print">
<PubDate>
<Year>2020</Year>
<Month>Feb</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Building simulation</Title>
<ISOAbbreviation>Build Simul</ISOAbbreviation>
</Journal>
<ArticleTitle>A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards.</ArticleTitle>
<Pagination>
<MedlinePgn>1-10</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12273-020-0623-4</ELocationID>
<Abstract>
<AbstractText>Aerial dispersion of human exhaled microbial contaminants and subsequent contamination of surfaces is a potential route for infection transmission in hospitals. Most general hospital wards have ventilation systems that drive air and thus contaminants from the patient areas towards the corridors. This study investigates the transport mechanism and deposition patterns of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within a typical six bedded general inpatient ward cubicle through numerical simulation. It demonstrates that both air change and exhaust airflow rates have significant effects on not only the airflow but also the particle distribution within a mechanically ventilated space. Moreover, the location of an infected patient within the ward cubicle is crucial in determining the extent of infection risk to other ward occupants. Hence, it is recommended to provide exhaust grilles in close proximity to a patient, preferably above each patient's bed. To achieve infection prevention and control, high exhaust airflow rate is also suggested. Regardless of the ventilation design, all patients and any surfaces within a ward cubicle should be regularly and thoroughly cleaned and disinfected to remove microbial contamination. The outcome of this study can serve as a source of reference for hospital management to better ventilation design strategies for mitigating the risk of infection.</AbstractText>
<CopyrightInformation>© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Satheesan</LastName>
<ForeName>Manoj Kumar</ForeName>
<Initials>MK</Initials>
<AffiliationInfo>
<Affiliation>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China.</Affiliation>
<Identifier Source="GRID">grid.16890.36</Identifier>
<Identifier Source="ISNI">0000 0004 1764 6123</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mui</LastName>
<ForeName>Kwok Wai</ForeName>
<Initials>KW</Initials>
<AffiliationInfo>
<Affiliation>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China.</Affiliation>
<Identifier Source="GRID">grid.16890.36</Identifier>
<Identifier Source="ISNI">0000 0004 1764 6123</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wong</LastName>
<ForeName>Ling Tim</ForeName>
<Initials>LT</Initials>
<AffiliationInfo>
<Affiliation>Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China.</Affiliation>
<Identifier Source="GRID">grid.16890.36</Identifier>
<Identifier Source="ISNI">0000 0004 1764 6123</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>China</Country>
<MedlineTA>Build Simul</MedlineTA>
<NlmUniqueID>101677932</NlmUniqueID>
<ISSNLinking>1996-3599</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">bioaerosol dispersion</Keyword>
<Keyword MajorTopicYN="N">computational fluid dynamics (CFD)</Keyword>
<Keyword MajorTopicYN="N">hospital general ward</Keyword>
<Keyword MajorTopicYN="N">indoor air quality (IAQ)</Keyword>
<Keyword MajorTopicYN="N">infection risk</Keyword>
<Keyword MajorTopicYN="N">ventilation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32211123</ArticleId>
<ArticleId IdType="doi">10.1007/s12273-020-0623-4</ArticleId>
<ArticleId IdType="pii">623</ArticleId>
<ArticleId IdType="pmc">PMC7090571</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Indoor Air. 2015 Dec;25(6):672-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25515610</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Indoor Air. 2005 Apr;15(2):83-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15737151</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Indoor Air. 2007 Jun;17(3):211-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17542834</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Hyg (Lond). 1946 Sep;44(6):471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20475760</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Indoor Air. 2007 Feb;17(1):2-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17257148</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ASHRAE Trans. 2012;118(1):442-449</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26722128</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect. 2011 Jan;62(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21094184</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Indoor Air. 2018 Jan;28(1):51-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28960494</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Ir Med J. 2006 Apr;99(4):102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16972578</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Korean J Intern Med. 2018 Mar;33(2):233-246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29506344</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Infect Control. 2008 May;36(4):250-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18455045</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Infect Control. 2009 Aug;37(6):505-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243856</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2013 Sep 19;18(38):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24084338</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Infect Dis. 2016 Aug 1;63(3):363-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27090992</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Indoor Air. 2010 Aug;20(4):284-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20546037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2004 Apr 22;350(17):1710-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15102996</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000132 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000132 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32211123
   |texte=   A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:32211123" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021