Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multimeric conformation of type III intermediate filaments but not the filamentous conformation exhibits high affinity to lipid bilayers.

Identifieur interne : 000096 ( PubMed/Curation ); précédent : 000095; suivant : 000097

Multimeric conformation of type III intermediate filaments but not the filamentous conformation exhibits high affinity to lipid bilayers.

Auteurs : Beomju Hwang [Japon] ; Hirohiko Ise [Japon]

Source :

RBID : pubmed:32243065

Abstract

Vimentin, desmin, glial fibrillary acidic protein (GFAP) and peripherin, classified as the type III intermediate filament family, maintain the integrity and architecture of various cell types. Recently, we reported their cell surface expression and binding to multivalent N-acetylglucosamine-conjugated polymers. Furthermore, the presence of vimentin on the surface of various cell types including malignant tumor cells and fibroblasts has been demonstrated. Type III intermediate filament proteins are traditionally considered intracellular proteins and do not possess signal peptides for cell membrane recruitment. Therefore, the mechanism of their transport to the cell surface is unclear. In the current study, we aimed to elucidate this mechanism by focusing on the relationship between their multimeric structure and lipid bilayer affinity. Blue native polyacrylamide gel electrophoresis demonstrated that cell surface-expressed type III intermediate filament proteins formed a multimeric mostly including 4-12-mers but not filamentous structure. Moreover, surface plasmon resonance analysis revealed that the multimeric structure of these recombinant proteins had high affinity to lipid bilayers, whereas their filament-like large multimeric structure did not. Our results suggest that type III intermediate filaments are incorporated into the cell membrane through alteration from a filamentous to a multimeric structure.

DOI: 10.1111/gtc.12768
PubMed: 32243065

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32243065

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multimeric conformation of type III intermediate filaments but not the filamentous conformation exhibits high affinity to lipid bilayers.</title>
<author>
<name sortKey="Hwang, Beomju" sort="Hwang, Beomju" uniqKey="Hwang B" first="Beomju" last="Hwang">Beomju Hwang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Engineering, Kyushu University, Fukuoka, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Engineering, Kyushu University, Fukuoka</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ise, Hirohiko" sort="Ise, Hirohiko" uniqKey="Ise H" first="Hirohiko" last="Ise">Hirohiko Ise</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32243065</idno>
<idno type="pmid">32243065</idno>
<idno type="doi">10.1111/gtc.12768</idno>
<idno type="wicri:Area/PubMed/Corpus">000096</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000096</idno>
<idno type="wicri:Area/PubMed/Curation">000096</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000096</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Multimeric conformation of type III intermediate filaments but not the filamentous conformation exhibits high affinity to lipid bilayers.</title>
<author>
<name sortKey="Hwang, Beomju" sort="Hwang, Beomju" uniqKey="Hwang B" first="Beomju" last="Hwang">Beomju Hwang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Engineering, Kyushu University, Fukuoka, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Engineering, Kyushu University, Fukuoka</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ise, Hirohiko" sort="Ise, Hirohiko" uniqKey="Ise H" first="Hirohiko" last="Ise">Hirohiko Ise</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genes to cells : devoted to molecular & cellular mechanisms</title>
<idno type="eISSN">1365-2443</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Vimentin, desmin, glial fibrillary acidic protein (GFAP) and peripherin, classified as the type III intermediate filament family, maintain the integrity and architecture of various cell types. Recently, we reported their cell surface expression and binding to multivalent N-acetylglucosamine-conjugated polymers. Furthermore, the presence of vimentin on the surface of various cell types including malignant tumor cells and fibroblasts has been demonstrated. Type III intermediate filament proteins are traditionally considered intracellular proteins and do not possess signal peptides for cell membrane recruitment. Therefore, the mechanism of their transport to the cell surface is unclear. In the current study, we aimed to elucidate this mechanism by focusing on the relationship between their multimeric structure and lipid bilayer affinity. Blue native polyacrylamide gel electrophoresis demonstrated that cell surface-expressed type III intermediate filament proteins formed a multimeric mostly including 4-12-mers but not filamentous structure. Moreover, surface plasmon resonance analysis revealed that the multimeric structure of these recombinant proteins had high affinity to lipid bilayers, whereas their filament-like large multimeric structure did not. Our results suggest that type III intermediate filaments are incorporated into the cell membrane through alteration from a filamentous to a multimeric structure.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32243065</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2443</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>Genes to cells : devoted to molecular & cellular mechanisms</Title>
<ISOAbbreviation>Genes Cells</ISOAbbreviation>
</Journal>
<ArticleTitle>Multimeric conformation of type III intermediate filaments but not the filamentous conformation exhibits high affinity to lipid bilayers.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/gtc.12768</ELocationID>
<Abstract>
<AbstractText>Vimentin, desmin, glial fibrillary acidic protein (GFAP) and peripherin, classified as the type III intermediate filament family, maintain the integrity and architecture of various cell types. Recently, we reported their cell surface expression and binding to multivalent N-acetylglucosamine-conjugated polymers. Furthermore, the presence of vimentin on the surface of various cell types including malignant tumor cells and fibroblasts has been demonstrated. Type III intermediate filament proteins are traditionally considered intracellular proteins and do not possess signal peptides for cell membrane recruitment. Therefore, the mechanism of their transport to the cell surface is unclear. In the current study, we aimed to elucidate this mechanism by focusing on the relationship between their multimeric structure and lipid bilayer affinity. Blue native polyacrylamide gel electrophoresis demonstrated that cell surface-expressed type III intermediate filament proteins formed a multimeric mostly including 4-12-mers but not filamentous structure. Moreover, surface plasmon resonance analysis revealed that the multimeric structure of these recombinant proteins had high affinity to lipid bilayers, whereas their filament-like large multimeric structure did not. Our results suggest that type III intermediate filaments are incorporated into the cell membrane through alteration from a filamentous to a multimeric structure.</AbstractText>
<CopyrightInformation>© 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hwang</LastName>
<ForeName>Beomju</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Engineering, Kyushu University, Fukuoka, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ise</LastName>
<ForeName>Hirohiko</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4948-9375</Identifier>
<AffiliationInfo>
<Affiliation>Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>KAKENHI JP15K01313</GrantID>
<Agency>Japan Society for the Promotion of Science</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>KAKENHI JP19K12804</GrantID>
<Agency>Japan Society for the Promotion of Science</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>the Cooperative Research program of "Network Joi</GrantID>
<Agency>Ministry of Education, Culture, Sports, Science and Technology</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genes Cells</MedlineTA>
<NlmUniqueID>9607379</NlmUniqueID>
<ISSNLinking>1356-9597</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">GFAP</Keyword>
<Keyword MajorTopicYN="N">atomic force microscopy</Keyword>
<Keyword MajorTopicYN="N">cell membrane</Keyword>
<Keyword MajorTopicYN="N">desmin</Keyword>
<Keyword MajorTopicYN="N">peripherin</Keyword>
<Keyword MajorTopicYN="N">surface plasmon resonance</Keyword>
<Keyword MajorTopicYN="N">type III intermediate filament protein</Keyword>
<Keyword MajorTopicYN="N">vimentin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32243065</ArticleId>
<ArticleId IdType="doi">10.1111/gtc.12768</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Ando, S., Tanabe, K., Gonda, Y., Sato, C., & Inagaki, M. (1989). Domain- and sequence-specific phosphorylation of vimentin induces disassembly of the filament structure. Biochemistry, 28, 2974-2979. https://doi.org/10.1021/bi00433a035</Citation>
</Reference>
<Reference>
<Citation>Andreev, O. A., Karabadzhak, A. G., Weerakkody, D., Andreev, G. O., Engelman, D. M., & Reshetnyak, Y. K. (2010). pH (low) insertion peptide (pHLIP) inserts across a lipid bilayer as a helix and exits by a different path. Proceedings of the National Academy of Sciences, 107(9), 4081-4086. https://doi.org/10.1073/pnas.0914330107</Citation>
</Reference>
<Reference>
<Citation>Cai, Z., Jitkaew, S., Zhao, J., Chiang, H. C., Choksi, S., Liu, J., … Liu, Z. G. (2014). Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biology, 16, 55-65. https://doi.org/10.1038/ncb2883</Citation>
</Reference>
<Reference>
<Citation>Chou, Y. H., Bischoff, J. R., Beach, D., & Goldman, R. D. (1990). Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin. Cell, 62, 1063-1071. https://doi.org/10.1016/0092-8674(90)90384-Q</Citation>
</Reference>
<Reference>
<Citation>Der Perng, M., Su, M., Wen, S. F., Li, R., Gibbon, T., Prescott, A. R., … Quinlan, R. A. (2006). The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27. American Journal of Human Genetics, 79, 197-213. https://doi.org/10.1086/504411</Citation>
</Reference>
<Reference>
<Citation>Dondelinger, Y., Declercq, W., Montessuit, S., Roelandt, R., Gonclaves, A., Bruggeman, I., … Vandenabeele, P. (2014). MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Reports, 7, 971-981. https://doi.org/10.1016/j.celrep.2014.04.026</Citation>
</Reference>
<Reference>
<Citation>Duprey, P., & Paulin, D. (1995). What can be learned from intermediate filament gene regulation in the mouse embryo. International Journal of Developmental Biology, 39, 443-457.</Citation>
</Reference>
<Reference>
<Citation>Eriksson, J. E., He, T., Trejo-Skalli, A. V., Härmälä-Braskén, A. S., Hellman, J., Chou, Y. H., & Goldman, R. D. (2004). Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. Journal of Cell Science, 117, 919-932. https://doi.org/10.1242/jcs.00906</Citation>
</Reference>
<Reference>
<Citation>Galluzzi, L., Kepp, O., & Kroemer, G. (2014). MLKL regulates necrotic plasma membrane permeabilization. Cell Research, 24, 139-140. https://doi.org/10.1038/cr.2014.8</Citation>
</Reference>
<Reference>
<Citation>Goto, H., Kosako, H., Tanabe, K., Yanagida, M., Sakurai, M., Amano, M., … Inagaki, M. (1998). Phosphorylation of vimentin by rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis. Journal of Biological Chemistry, 273, 11728-11736. https://doi.org/10.1074/jbc.273.19.11728</Citation>
</Reference>
<Reference>
<Citation>Goto, H., Yasui, Y., Kawajiri, A., Nigg, E. A., Terada, Y., Tatsuka, M., … Inagaki, M. (2003). Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. Journal of Biological Chemistry, 278, 8526-8530. https://doi.org/10.1074/jbc.M210892200</Citation>
</Reference>
<Reference>
<Citation>Hall, K., & Aguilar, M. I. (2010). Surface plasmon resonance spectroscopy for studying the membrane binding of antimicrobial peptides. Methods in Molecular Biology, 627, 213-223. https://doi.org/10.1007/978-1-60761-670-2_14</Citation>
</Reference>
<Reference>
<Citation>Helfand, B. T., Mendez, M. G., Murthy, S. N., Shumaker, D. K., Grin, B., Mahammad, S., … Goldman, R. D. (2011). Vimentin organization modulates the formation of lamellipodia. Molecular Biology of the Cell, 22, 1274-1289. https://doi.org/10.1091/mbc.E10-08-0699</Citation>
</Reference>
<Reference>
<Citation>Herrmann, H., Bär, H., Kreplak, L., Strelkov, S. V., & Aebi, U. (2007). Intermediate filaments: From cell architecture to nanomechanics. Nature Reviews Molecular Cell Biology, 8, 562-573. https://doi.org/10.1038/nrm2197</Citation>
</Reference>
<Reference>
<Citation>Hou, X., Small, D. H., & Aguilar, M. I. (2010). Surface plasmon resonance spectroscopy in determination of the interactions between amyloid beta proteins (Aβ) and lipid membranes. Methods in Molecular Biology, 627, 225-235.</Citation>
</Reference>
<Reference>
<Citation>Inada, H., Goto, H., Tanabe, K., Nishi, Y., Kaibuchi, K., & Inagaki, M. (1998). Rho-associated kinase phosphorylates desmin, the myogenic intermediate filament protein, at unique amino-terminal sites. Biochemical and Biophysical Research Communications, 253, 21-25. https://doi.org/10.1006/bbrc.1998.9732</Citation>
</Reference>
<Reference>
<Citation>Inagaki, M., Nishi, Y., Nishizawa, K., Matsuyama, M., & Sato, C. (1987). Site-specific phosphorylation induces disassembly of vimentin filaments in vitro. Nature, 328, 649-652. https://doi.org/10.1038/328649a0</Citation>
</Reference>
<Reference>
<Citation>Ise, H., Goto, M., Komura, K., & Akaike, T. (2012). Engulfment and clearance of apoptotic cells based on a GlcNAc-binding lectin-like property of surface vimentin. Glycobiology, 22, 788-805. https://doi.org/10.1093/glycob/cws052</Citation>
</Reference>
<Reference>
<Citation>Ise, H., Kobayashi, S., Goto, M., Sato, T., Kawakubo, M., Takahashi, M., … Akaike, T. (2010). Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces. Glycobiology, 20, 843-864. https://doi.org/10.1093/glycob/cwq039</Citation>
</Reference>
<Reference>
<Citation>Ise, H., Matsunaga, K., Shinohara, M., & Sakai, Y. (2019). Improved isolation of mesenchymal stem cells based on interactions between N-Acetylglucosamine-bearing polymers and cell-surface vimentin. Stem Cells International, 2019, 4341286. https://doi.org/10.1155/2019/4341286</Citation>
</Reference>
<Reference>
<Citation>Ise, H., Yamasaki, S., Sueyoshi, K., & Miura, Y. (2017). Elucidation of GlcNAc-binding properties of type III intermediate filament proteins, using GlcNAc-bearing polymers. Genes to Cells, 22, 900-917. https://doi.org/10.1111/gtc.12535</Citation>
</Reference>
<Reference>
<Citation>Ivaska, J., Pallari, H. M., Nevo, J., & Eriksson, J. E. (2007). Novel functions of vimentin in cell adhesion, migration, and signaling. Experimental Cell Research, 313, 2050-2062. https://doi.org/10.1016/j.yexcr.2007.03.040</Citation>
</Reference>
<Reference>
<Citation>Ivaska, J., Vuoriluoto, K., Huovinen, T., Izawa, I., Inagaki, M., & Parke, P. J. (2005). PKCε-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO Journal, 24, 3834-3845. https://doi.org/10.1038/sj.emboj.7600847</Citation>
</Reference>
<Reference>
<Citation>Izawa, I., & Inagaki, M. (2006). Regulatory mechanisms and functions of intermediate filaments: A study using site- and phosphorylation state-specific antibodies. Cancer Science, 97, 167-174. https://doi.org/10.1111/j.1349-7006.2006.00161.x</Citation>
</Reference>
<Reference>
<Citation>Kim, S. J., Ise, H., Goto, M., & Akaike, T. (2012). Interactions of vimentin- or desmin-expressing liver cells with N-acetylglucosamine-bearing polymers. Biomaterials, 33, 2154-2164.</Citation>
</Reference>
<Reference>
<Citation>Kirmse, R., Portet, S., Mücke, N., Aebi, U., Herrmann, H., & Langowski, J. (2007). A quantitative kinetic model for the in vitro assembly of intermediate filaments from tetrameric vimentin. Journal of Biological Chemistry, 282, 18563-18572. https://doi.org/10.1074/jbc.M701063200</Citation>
</Reference>
<Reference>
<Citation>Kiss, B., Karsai, A., & Kellermayer, M. S. (2006). Nanomechanical properties of desmin intermediate filaments. Journal of Structural Biology, 155, 327-339. https://doi.org/10.1016/j.jsb.2006.03.020</Citation>
</Reference>
<Reference>
<Citation>Komura, K., Ise, H., & Akaike, T. (2012). Dynamic behaviors of vimentin induced by interaction with GlcNAc molecules. Glycobiology, 22, 1741-1759. https://doi.org/10.1093/glycob/cws118</Citation>
</Reference>
<Reference>
<Citation>Konishi, H., Namikawa, K., Shikata, K., Kobatake, Y., Tachibana, T., & Kiyama, H. (2007). Identification of peripherin as a Akt substrate in neurons. Journal of Biological Chemistry, 282, 23491-23499. https://doi.org/10.1074/jbc.M611703200</Citation>
</Reference>
<Reference>
<Citation>Kosako, H., Amano, M., Yanagida, M., Tanabe, K., Nishi, Y., Kaibuchi, K., & Inagaki, M. (1997). Phosphorylation of glial fibrillary acidic protein at the same sites by cleavage furrow kinase and rho-associated kinase. Journal of Biological Chemistry, 272, 10333-10336. https://doi.org/10.1074/jbc.272.16.10333</Citation>
</Reference>
<Reference>
<Citation>Lindsay, C. R., Le Moulec, S., Billiot, F., Loriot, Y., Ngo-Camus, M., Vielh, P., & Farace, F. (2016). Vimentin and Ki67 expression in circulating tumour cells derived from castrate-resistant prostate cancer. BMC Cancer, 16, 168. https://doi.org/10.1186/s12885-016-2192-6</Citation>
</Reference>
<Reference>
<Citation>Lowery, J., Kuczmarski, E. R., Herrmann, H., & Goldman, R. D. (2015). Intermediate filaments play a pivotal role in regulating cell architecture and function. Journal of Biological Chemistry, 290, 17145-17153. https://doi.org/10.1074/jbc.R115.640359</Citation>
</Reference>
<Reference>
<Citation>Nam, T. S., Kim, J. H., Chang, C. H., Yoon, W., Jung, Y. S., Kang, S. Y., … Kim, M. K. (2015). Identification of a novel nonsense mutation in the rod domain of GFAP that is associated with Alexander disease. European Journal of Human Genetics, 23, 72-78. https://doi.org/10.1038/ejhg.2014.68</Citation>
</Reference>
<Reference>
<Citation>Nishimura, N., & Balch, W. E. (1997). A di-acidic signal required for selective export from the endoplasmic reticulum. Science, 277, 556-558. https://doi.org/10.1126/science.277.5325.556</Citation>
</Reference>
<Reference>
<Citation>Osborn, M. (1983). Intermediate filaments as histologic markers: An overview. The Journal of Investigative Dermatology, 81, 104-107. https://doi.org/10.1111/1523-1747.ep12540811</Citation>
</Reference>
<Reference>
<Citation>Satelli, A., Brownlee, Z., Mitra, A., Meng, Q. H., & Li, S. (2015). Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule- and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clinical Chemistry, 61, 259-266. https://doi.org/10.1373/clinchem.2014.228122</Citation>
</Reference>
<Reference>
<Citation>Satelli, A., & Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and Molecular Life Sciences, 68, 3033-3046. https://doi.org/10.1007/s00018-011-0735-1</Citation>
</Reference>
<Reference>
<Citation>Steinmetz, N. F., Cho, C. F., Ablack, A., Lewis, J. D., & Manchester, M. (2011). Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells. Nanomedicine (Lond), 6, 351-364. https://doi.org/10.2217/nnm.10.136</Citation>
</Reference>
<Reference>
<Citation>Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., … Wang, X. (2012). Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 148, 213-227. https://doi.org/10.1016/j.cell.2011.11.031</Citation>
</Reference>
<Reference>
<Citation>Terwilliger, T. C., & Eisenberg, D. (1982). The structure of melittin. II. Interpretation of the structure. Journal of Biological Chemistry, 257, 6016-6022.</Citation>
</Reference>
<Reference>
<Citation>Yang, C. Y., Chang, P. W., Hsu, W. H., Chang, H. C., Chen, C. L., Lai, C. C., … Chen, H. C. (2019). Src and SHP2 coordinately regulate the dynamics and organization of vimentin filaments during cell migration. Oncogene, 38, 4075-4094. https://doi.org/10.1038/s41388-019-0705-x</Citation>
</Reference>
<Reference>
<Citation>Yang, J., Zou, L., Yang, Y., Yuan, J., Hu, Z., Liu, H., … Rao, X. (2016). Superficial vimentin mediates DENV-2 infection of vascular endothelial cells. Scientific Reports, 6(1), 38372. https://doi.org/10.1038/srep38372</Citation>
</Reference>
<Reference>
<Citation>Yu, Y. T. C., Chien, S. C., Chen, I. Y., Lai, C. T., Tsay, Y. G., Chang, S. C., & Chang, M. F. (2016). Surface vimentin is critical for the cell entry of SARS-CoV. Journal of Biomedical Science, 23, 14. https://doi.org/10.1186/s12929-016-0234-7</Citation>
</Reference>
<Reference>
<Citation>Zhu, Q. S., Rosenblatt, K., Huang, K. L., Lahat, G., Brobey, R., Bolshakov, S., … Lev, D. (2011). Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene., 30, 457-470.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000096 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000096 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32243065
   |texte=   Multimeric conformation of type III intermediate filaments but not the filamentous conformation exhibits high affinity to lipid bilayers.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:32243065" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021