Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures.

Identifieur interne : 000004 ( PubMed/Curation ); précédent : 000003; suivant : 000005

Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures.

Auteurs : Ying Yan [République populaire de Chine] ; Le Chang [République populaire de Chine] ; Lunan Wang [République populaire de Chine]

Source :

RBID : pubmed:32302058

Abstract

Emerging and reemerging infectious diseases are global public concerns. With the outbreak of unknown pneumonia in Wuhan, China in December 2019, a new coronavirus, SARS-CoV-2 has been attracting tremendous attention. Rapid and accurate laboratory testing of SARS-CoV-2 is essential for early discovery, early reporting, early quarantine, early treatment, and cutting off epidemic transmission. The genome structure, transmission, and pathogenesis of SARS-CoV-2 are basically similar to SARS-CoV and MERS-CoV, the other two beta-CoVs of medical importance. During the SARS-CoV and MERS-CoV epidemics, a variety of molecular and serological diagnostic assays were established and should be referred to for SARS-CoV-2. In this review, by summarizing the articles and guidelines about specimen collection, nucleic acid tests (NAT) and serological tests for SARS-CoV, MERS-CoV, and SARS-CoV-2, several suggestions are put forward to improve the laboratory testing of SARS-CoV-2. In summary, for NAT: collecting stool and blood samples at later periods of illness to improve the positive rate if lower respiratory tract specimens are unavailable; increasing template volume to raise the sensitivity of detection; putting samples in reagents containing guanidine salt to inactivate virus as well as protect RNA; setting proper positive, negative and inhibition controls to ensure high-quality results; simultaneously amplifying human RNase P gene to avoid false-negative results. For antibody test, diverse assays targeting different antigens, and collecting paired samples are needed.

DOI: 10.1002/rmv.2106
PubMed: 32302058

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32302058

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures.</title>
<author>
<name sortKey="Yan, Ying" sort="Yan, Ying" uniqKey="Yan Y" first="Ying" last="Yan">Ying Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chang, Le" sort="Chang, Le" uniqKey="Chang L" first="Le" last="Chang">Le Chang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lunan" sort="Wang, Lunan" uniqKey="Wang L" first="Lunan" last="Wang">Lunan Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32302058</idno>
<idno type="pmid">32302058</idno>
<idno type="doi">10.1002/rmv.2106</idno>
<idno type="wicri:Area/PubMed/Corpus">000004</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000004</idno>
<idno type="wicri:Area/PubMed/Curation">000004</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000004</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures.</title>
<author>
<name sortKey="Yan, Ying" sort="Yan, Ying" uniqKey="Yan Y" first="Ying" last="Yan">Ying Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chang, Le" sort="Chang, Le" uniqKey="Chang L" first="Le" last="Chang">Le Chang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lunan" sort="Wang, Lunan" uniqKey="Wang L" first="Lunan" last="Wang">Lunan Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Reviews in medical virology</title>
<idno type="eISSN">1099-1654</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Emerging and reemerging infectious diseases are global public concerns. With the outbreak of unknown pneumonia in Wuhan, China in December 2019, a new coronavirus, SARS-CoV-2 has been attracting tremendous attention. Rapid and accurate laboratory testing of SARS-CoV-2 is essential for early discovery, early reporting, early quarantine, early treatment, and cutting off epidemic transmission. The genome structure, transmission, and pathogenesis of SARS-CoV-2 are basically similar to SARS-CoV and MERS-CoV, the other two beta-CoVs of medical importance. During the SARS-CoV and MERS-CoV epidemics, a variety of molecular and serological diagnostic assays were established and should be referred to for SARS-CoV-2. In this review, by summarizing the articles and guidelines about specimen collection, nucleic acid tests (NAT) and serological tests for SARS-CoV, MERS-CoV, and SARS-CoV-2, several suggestions are put forward to improve the laboratory testing of SARS-CoV-2. In summary, for NAT: collecting stool and blood samples at later periods of illness to improve the positive rate if lower respiratory tract specimens are unavailable; increasing template volume to raise the sensitivity of detection; putting samples in reagents containing guanidine salt to inactivate virus as well as protect RNA; setting proper positive, negative and inhibition controls to ensure high-quality results; simultaneously amplifying human RNase P gene to avoid false-negative results. For antibody test, diverse assays targeting different antigens, and collecting paired samples are needed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32302058</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1099-1654</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Reviews in medical virology</Title>
<ISOAbbreviation>Rev. Med. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures.</ArticleTitle>
<Pagination>
<MedlinePgn>e2106</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/rmv.2106</ELocationID>
<Abstract>
<AbstractText>Emerging and reemerging infectious diseases are global public concerns. With the outbreak of unknown pneumonia in Wuhan, China in December 2019, a new coronavirus, SARS-CoV-2 has been attracting tremendous attention. Rapid and accurate laboratory testing of SARS-CoV-2 is essential for early discovery, early reporting, early quarantine, early treatment, and cutting off epidemic transmission. The genome structure, transmission, and pathogenesis of SARS-CoV-2 are basically similar to SARS-CoV and MERS-CoV, the other two beta-CoVs of medical importance. During the SARS-CoV and MERS-CoV epidemics, a variety of molecular and serological diagnostic assays were established and should be referred to for SARS-CoV-2. In this review, by summarizing the articles and guidelines about specimen collection, nucleic acid tests (NAT) and serological tests for SARS-CoV, MERS-CoV, and SARS-CoV-2, several suggestions are put forward to improve the laboratory testing of SARS-CoV-2. In summary, for NAT: collecting stool and blood samples at later periods of illness to improve the positive rate if lower respiratory tract specimens are unavailable; increasing template volume to raise the sensitivity of detection; putting samples in reagents containing guanidine salt to inactivate virus as well as protect RNA; setting proper positive, negative and inhibition controls to ensure high-quality results; simultaneously amplifying human RNase P gene to avoid false-negative results. For antibody test, diverse assays targeting different antigens, and collecting paired samples are needed.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Le</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Lunan</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-3163-7891</Identifier>
<AffiliationInfo>
<Affiliation>National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Rev Med Virol</MedlineTA>
<NlmUniqueID>9112448</NlmUniqueID>
<ISSNLinking>1052-9276</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">MERS-CoV</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2 (2019-nCoV)</Keyword>
<Keyword MajorTopicYN="N">nucleic acid testing</Keyword>
<Keyword MajorTopicYN="N">serological testing</Keyword>
<Keyword MajorTopicYN="N">specimen collection</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32302058</ArticleId>
<ArticleId IdType="doi">10.1002/rmv.2106</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019;11(1):59.</Citation>
</Reference>
<Reference>
<Citation>Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733.</Citation>
</Reference>
<Reference>
<Citation>Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses - a statement of the Coronavirus Study Group. bioRxiv. 2020. https://doi.org/10.1101/2020.02.07.937862</Citation>
</Reference>
<Reference>
<Citation>WHO. Coronavirus disease (COVID-2019) situation reports. 2020.</Citation>
</Reference>
<Reference>
<Citation>Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res. 2011;81:85-164.</Citation>
</Reference>
<Reference>
<Citation>Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-192.</Citation>
</Reference>
<Reference>
<Citation>Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130-137.</Citation>
</Reference>
<Reference>
<Citation>Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490-502.</Citation>
</Reference>
<Reference>
<Citation>Shi ZL, Guo D, Rottier PJ. Coronavirus: epidemiology, genome replication and the interactions with their hosts. Virol Sin. 2016;31(1):1-2.</Citation>
</Reference>
<Reference>
<Citation>Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470-473.</Citation>
</Reference>
<Reference>
<Citation>Chu DKW, Pan Y, Cheng SMS, et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem. 2020;66(4):549-555.</Citation>
</Reference>
<Reference>
<Citation>Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069.</Citation>
</Reference>
<Reference>
<Citation>Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415-424.</Citation>
</Reference>
<Reference>
<Citation>Shi X, Gong E, Gao D, et al. Severe acute respiratory syndrome associated coronavirus is detected in intestinal tissues of fatal cases. Am J Gastroenterol. 2005;100(1):169-176.</Citation>
</Reference>
<Reference>
<Citation>Alsaad KO, Hajeer AH, Al Balwi M, et al. Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection - clinicopathological and ultrastructural study. Histopathology. 2018;72(3):516-524.</Citation>
</Reference>
<Reference>
<Citation>Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814-1820.</Citation>
</Reference>
<Reference>
<Citation>Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-454.</Citation>
</Reference>
<Reference>
<Citation>Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260-1263.</Citation>
</Reference>
<Reference>
<Citation>Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; pii/S2213-2600(20)30079-5.</Citation>
</Reference>
<Reference>
<Citation>Griffith JF, Antonio GE, Kumta SM, et al. Osteonecrosis of hip and knee in patients with severe acute respiratory syndrome treated with steroids. Radiology. 2005;235(1):168-175.</Citation>
</Reference>
<Reference>
<Citation>Chan MH, Chan PK, Griffith JF, et al. Steroid-induced osteonecrosis in severe acute respiratory syndrome: a retrospective analysis of biochemical markers of bone metabolism and corticosteroid therapy. Pathology. 2006;38(3):229-235.</Citation>
</Reference>
<Reference>
<Citation>Chinese National Health Commission. Guideline for diagnosis and treatment of COVID-19. 2020.</Citation>
</Reference>
<Reference>
<Citation>Zhang W, Du RH, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386-389.</Citation>
</Reference>
<Reference>
<Citation>Ling Y, Xu SB, Lin YX, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl). 2020. https://doi.org/10.1097/CM9.0000000000000774</Citation>
</Reference>
<Reference>
<Citation>WHO. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected. 2020.</Citation>
</Reference>
<Reference>
<Citation>US CDC. Interim Guidance for Discontinuation of Transmission-Based Precautions and Disposition of Hospitalized Patients with COVID-19. 2020.</Citation>
</Reference>
<Reference>
<Citation>US CDC. Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens from Persons Under Investigation (PUIs) for Coronavirus Disease 2019 (COVID-19). 2020.</Citation>
</Reference>
<Reference>
<Citation>US CDC. Specimen collection guidelines.</Citation>
</Reference>
<Reference>
<Citation>Chinese National Health Commission. Guideline for laboratory testing of COVID-19.</Citation>
</Reference>
<Reference>
<Citation>Kim C, Ahmed JA, Eidex RB, et al. Comparison of nasopharyngeal and oropharyngeal swabs for the diagnosis of eight respiratory viruses by real-time reverse transcription-PCR assays. PLoS One. 2011;6(6):e21610.</Citation>
</Reference>
<Reference>
<Citation>Ek P, Bottiger B, Dahlman D, Hansen KB, Nyman M, Nilsson AC. A combination of naso- and oropharyngeal swabs improves the diagnostic yield of respiratory viruses in adult emergency department patients. Infect Dis (Lond). 2019;51(4):241-248.</Citation>
</Reference>
<Reference>
<Citation>Spencer S, Thompson MG, Flannery B, Fry A. Comparison of respiratory specimen collection methods for detection of influenza virus infection by reverse transcription-PCR: a literature review. J Clin Microbiol. 2019;57(9):e00027-19.</Citation>
</Reference>
<Reference>
<Citation>To KK, Tsang OT, Chik-Yan Yip C, et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis. 2020;pii/ciaa149. https://doi.org/10.1093/cid/ciaa149</Citation>
</Reference>
<Reference>
<Citation>WHO. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. 2020.</Citation>
</Reference>
<Reference>
<Citation>WHO. Laboratory biosafety guidance related to the novel cornoavirus (2019-nCoV). 2020.</Citation>
</Reference>
<Reference>
<Citation>Blow JA, Mores CN, Dyer J, Dohm DJ. Viral nucleic acid stabilization by RNA extraction reagent. J Virol Methods. 2008;150(1-2):41-44.</Citation>
</Reference>
<Reference>
<Citation>Blow JA, Dohm DJ, Negley DL, Mores CN. Virus inactivation by nucleic acid extraction reagents. J Virol Methods. 2004;119(2):195-198.</Citation>
</Reference>
<Reference>
<Citation>Alfson KJ, Griffiths A. Development and testing of a method for validating chemical inactivation of Ebola virus. Viruses. 2018;10(3):126.</Citation>
</Reference>
<Reference>
<Citation>Burton JE, Easterbrook L, Pitman J, et al. The effect of a non-denaturing detergent and a guanidinium-based inactivation agent on the viability of Ebola virus in mock clinical serum samples. J Virol Methods. 2017;250:34-40.</Citation>
</Reference>
<Reference>
<Citation>Kumar M, Mazur S, Ork BL, et al. Inactivation and safety testing of Middle East respiratory syndrome coronavirus. J Virol Methods. 2015;223:13-18.</Citation>
</Reference>
<Reference>
<Citation>Chang L, Yan Y, Wang L. Coronavirus disease 2019: coronaviruses and blood safety. Transfus Med Rev. 2020;pii/S0887-7963(20)30014-6. https://doi.org/10.1016/j.tmrv.2020.02.003</Citation>
</Reference>
<Reference>
<Citation>Hu X, An T, Situ B, et al. Heat inactivation of serum interferes with the immunoanalysis of antibodies to SARS-CoV-2. medRxiv. 2020. https://doi.org/10.1101/2020.03.12.20034231</Citation>
</Reference>
<Reference>
<Citation>Peiris JS, Chu CM, Cheng VC, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361(9371):1767-1772.</Citation>
</Reference>
<Reference>
<Citation>Cheng PK, Wong DA, Tong LK, et al. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet. 2004;363(9422):1699-1700.</Citation>
</Reference>
<Reference>
<Citation>Oh MD, Park WB, Choe PG, et al. Viral load kinetics of MERS coronavirus infection. N Engl J Med. 2016;375(13):1303-1305.</Citation>
</Reference>
<Reference>
<Citation>Kim JY, Ko JH, Kim Y, et al. Viral load kinetics of SARS-CoV-2 infection in first two patients in Korea. J Korean Med Sci. 2020;35(7):e86.</Citation>
</Reference>
<Reference>
<Citation>Chan PK, To WK, Ng KC, et al. Laboratory diagnosis of SARS. Emerg Infect Dis. 2004;10(5):825-831.</Citation>
</Reference>
<Reference>
<Citation>Chan KH, Poon LL, Cheng VC, et al. Detection of SARS coronavirus in patients with suspected SARS. Emerg Infect Dis. 2004;10(2):294-299.</Citation>
</Reference>
<Reference>
<Citation>Hung IF, Cheng VC, Wu AK, et al. Viral loads in clinical specimens and SARS manifestations. Emerg Infect Dis. 2004;10(9):1550-1557.</Citation>
</Reference>
<Reference>
<Citation>Drosten C, Seilmaier M, Corman VM, et al. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis. 2013;13(9):745-751.</Citation>
</Reference>
<Reference>
<Citation>Corman VM, Albarrak AM, Omrani AS, et al. Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection. Clin Infect Dis. 2016;62(4):477-483.</Citation>
</Reference>
<Reference>
<Citation>Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis. 2020;20(4):411-412.</Citation>
</Reference>
<Reference>
<Citation>Ng EK, Hui DS, Chan KC, et al. Quantitative analysis and prognostic implication of SARS coronavirus RNA in the plasma and serum of patients with severe acute respiratory syndrome. Clin Chem. 2003;49(12):1976-1980.</Citation>
</Reference>
<Reference>
<Citation>Kim SY, Park SJ, Cho SY, et al. Viral RNA in blood as Indicator of severe outcome in Middle East respiratory syndrome coronavirus infection. Emerg Infect Dis. 2016;22(10):1813-1816.</Citation>
</Reference>
<Reference>
<Citation>Chen W, Lan Y, Yuan X, et al. Detectable 2019-nCoV viral RNA in blood is a strong indicator for the further clinical severity. Emerg Microbes Infect. 2020;9(1):469-473.</Citation>
</Reference>
<Reference>
<Citation>Grant PR, Garson JA, Tedder RS, Chan PK, Tam JS, Sung JJ. Detection of SARS coronavirus in plasma by real-time RT-PCR. N Engl J Med. 2003;349(25):2468-2469.</Citation>
</Reference>
<Reference>
<Citation>Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438-442.</Citation>
</Reference>
<Reference>
<Citation>Nitsche A, Schweiger B, Ellerbrok H, Niedrig M, Pauli G. SARS coronavirus detection. Emerg Infect Dis. 2004;10(7):1300-1303.</Citation>
</Reference>
<Reference>
<Citation>Emery SL, Erdman DD, Bowen MD, et al. Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerg Infect Dis. 2004;10(2):311-316.</Citation>
</Reference>
<Reference>
<Citation>Huang JL, Lin HT, Wang YM, et al. Rapid and sensitive detection of multiple genes from the SARS-coronavirus using quantitative RT-PCR with dual systems. J Med Virol. 2005;77(2):151-158.</Citation>
</Reference>
<Reference>
<Citation>Houng HS, Norwood D, Ludwig GV, Sun W, Lin M, Vaughn DW. Development and evaluation of an efficient 3′-noncoding region based SARS coronavirus (SARS-CoV) RT-PCR assay for detection of SARS-CoV infections. J Virol Methods. 2004;120(1):33-40.</Citation>
</Reference>
<Reference>
<Citation>WHO. Laboratory Testing for Middle East Respiratory Syndrome Coronavirus. 2018.</Citation>
</Reference>
<Reference>
<Citation>Corman VM, Eckerle I, Bleicker T, et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 2012;17(39):pii/20285.</Citation>
</Reference>
<Reference>
<Citation>Corman VM, Muller MA, Costabel U, et al. Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill. 2012;17(49):pii/20334.</Citation>
</Reference>
<Reference>
<Citation>Lu X, Whitaker B, Sakthivel SK, et al. Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus. J Clin Microbiol. 2014;52(1):67-75.</Citation>
</Reference>
<Reference>
<Citation>Simons FA, Vennema H, Rofina JE, et al. A mRNA PCR for the diagnosis of feline infectious peritonitis. J Virol Methods. 2005;124(1-2):111-116.</Citation>
</Reference>
<Reference>
<Citation>Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045.</Citation>
</Reference>
<Reference>
<Citation>Chinese CDC. Specific primers and probes for detection 2019 novel coronavirus. 2020.</Citation>
</Reference>
<Reference>
<Citation>HKU. Detection of 2019 novel coronavirus (2019-nCoV) in suspected human cases by RT-PCR. 2020.</Citation>
</Reference>
<Reference>
<Citation>Thailand Ministry of Public Health. Diagnostic detection of Novel coronavirus 2019 by real time RTPCR. 2020.</Citation>
</Reference>
<Reference>
<Citation>Japanese National Institute of Infectious Diseases. PCR and sequencing protocols for 2019-nCoV. 2020.</Citation>
</Reference>
<Reference>
<Citation>US CDC. Real-Time RT-PCR Panel for Detection 2019-Novel Coronavirus. 2020.</Citation>
</Reference>
<Reference>
<Citation>National Health Commission of China. Guideline for laboratory testing of COVID-19.</Citation>
</Reference>
<Reference>
<Citation>US CDC. CDC 2019-novel cornoavirus real-time RT-PCR diagnostic panel. 2020.</Citation>
</Reference>
<Reference>
<Citation>Kim J, Easley CJ. Isothermal DNA amplification in bioanalysis: strategies and applications. Bioanalysis. 2011;3(2):227-239.</Citation>
</Reference>
<Reference>
<Citation>Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5(8):795-800.</Citation>
</Reference>
<Reference>
<Citation>Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol. 2006;4(7):e204.</Citation>
</Reference>
<Reference>
<Citation>Leone G, van Schijndel H, van Gemen B, Kramer FR, Schoen CD. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res. 1998;26(9):2150-2155.</Citation>
</Reference>
<Reference>
<Citation>Nilsson M, Gullberg M, Dahl F, Szuhai K, Raap AK. Real-time monitoring of rolling-circle amplification using a modified molecular beacon design. Nucleic Acids Res. 2002;30(14):e66.</Citation>
</Reference>
<Reference>
<Citation>Euler M, Wang Y, Heidenreich D, et al. Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J Clin Microbiol. 2013;51(4):1110-1117.</Citation>
</Reference>
<Reference>
<Citation>Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.</Citation>
</Reference>
<Reference>
<Citation>Parida M, Sannarangaiah S, Dash PK, Rao PV, Morita K. Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev Med Virol. 2008;18(6):407-421.</Citation>
</Reference>
<Reference>
<Citation>Chantratita W, Pongtanapisit W, Piroj W, Srichunrasmi C, Seesuai S. Development and comparison of the real-time amplification based methods-NASBA-Beacon, RT-PCR taqman and RT-PCR hybridization probe assays-for the qualitative detection of sars coronavirus. Southeast Asian J Trop Med Public Health. 2004;35(3):623-629.</Citation>
</Reference>
<Reference>
<Citation>Hong TC, Mai QL, Cuong DV, et al. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J Clin Microbiol. 2004;42(5):1956-1961.</Citation>
</Reference>
<Reference>
<Citation>Poon LL, Wong BW, Chan KH, et al. Evaluation of real-time reverse transcriptase PCR and real-time loop-mediated amplification assays for severe acute respiratory syndrome coronavirus detection. J Clin Microbiol. 2005;43(7):3457-3459.</Citation>
</Reference>
<Reference>
<Citation>Wang B, Potter SJ, Lin Y, et al. Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification. J Clin Microbiol. 2005;43(5):2339-2344.</Citation>
</Reference>
<Reference>
<Citation>Abd El Wahed A, Patel P, Heidenreich D, Hufert FT, Weidmann M. Reverse transcription recombinase polymerase amplification assay for the detection of Middle East respiratory syndrome coronavirus. PLoS Curr. 2013;5. https://doi.org/10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364</Citation>
</Reference>
<Reference>
<Citation>Shirato K, Semba S, El-Kafrawy SA, et al. Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus. J Virol Methods. 2018;258:41-48.</Citation>
</Reference>
<Reference>
<Citation>Li G, Nie K, Zhang D, et al. Detection of Middle East respiratory syndrome coronavirus by reverse-transcription loop-mediated isothermal amplification. Bing Du Xue Bao. 2015;31(3):269-275.</Citation>
</Reference>
<Reference>
<Citation>Shirato K, Yano T, Senba S, et al. Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Virol J. 2014;11:139.</Citation>
</Reference>
<Reference>
<Citation>Huang P, Wang H, Cao Z, et al. A rapid and specific assay for the detection of MERS-CoV. Front Microbiol. 2018;9:1101.</Citation>
</Reference>
<Reference>
<Citation>Bhadra S, Jiang YS, Kumar MR, Johnson RF, Hensley LE, Ellington AD. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV). PLoS One. 2015;10(4):e0123126.</Citation>
</Reference>
<Reference>
<Citation>Lee SH, Baek YH, Kim YH, Choi YK, Song MS, Ahn JY. One-pot reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) for detecting MERS-CoV. Front Microbiol. 2016;7:2166.</Citation>
</Reference>
<Reference>
<Citation>Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565-1575.</Citation>
</Reference>
<Reference>
<Citation>Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84-87.</Citation>
</Reference>
<Reference>
<Citation>Feng Zhang OOA, Jonathan S. Gootenberg. A protocol for detection of COVID-19 using CRISPR diagnostics. 2020.</Citation>
</Reference>
<Reference>
<Citation>WHO. Recommendations for laboratories testing by PCR for presence of SARS coronavirus-RNA. 2020.</Citation>
</Reference>
<Reference>
<Citation>Park WB, Perera RA, Choe PG, et al. Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea. Emerg Infect Dis. 2015;21(12):2186-2189.</Citation>
</Reference>
<Reference>
<Citation>Meyer B, Drosten C, Muller MA. Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res. 2014;194:175-183.</Citation>
</Reference>
<Reference>
<Citation>Chan JF, Sridhar S, Yip CC, Lau SK, Woo PC. The role of laboratory diagnostics in emerging viral infections: the example of the Middle East respiratory syndrome epidemic. J Microbiol. 2017;55(3):172-182.</Citation>
</Reference>
<Reference>
<Citation>Qiu M, Shi Y, Guo Z, et al. Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect. 2005;7(5-6):882-889.</Citation>
</Reference>
<Reference>
<Citation>Tan YJ, Goh PY, Fielding BC, et al. Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin Diagn Lab Immunol. 2004;11(2):362-371.</Citation>
</Reference>
<Reference>
<Citation>Woo PC, Lau SK, Wong BH, et al. Differential sensitivities of severe acute respiratory syndrome (SARS) coronavirus spike polypeptide enzyme-linked immunosorbent assay (ELISA) and SARS coronavirus nucleocapsid protein ELISA for serodiagnosis of SARS coronavirus pneumonia. J Clin Microbiol. 2005;43(7):3054-3058.</Citation>
</Reference>
<Reference>
<Citation>Vlasova AN, Zhang X, Hasoksuz M, et al. Two-way antigenic cross-reactivity between severe acute respiratory syndrome coronavirus (SARS-CoV) and group 1 animal CoVs is mediated through an antigenic site in the N-terminal region of the SARS-CoV nucleoprotein. J Virol. 2007;81(24):13365-13377.</Citation>
</Reference>
<Reference>
<Citation>Chan KH, Chan JF, Tse H, et al. Cross-reactive antibodies in convalescent SARS patients’ sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests. J Infect. 2013;67(2):130-140.</Citation>
</Reference>
<Reference>
<Citation>Elshabrawy HA, Coughlin MM, Baker SC, Prabhakar BS. Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing. PLoS One. 2012;7(11):e50366.</Citation>
</Reference>
<Reference>
<Citation>WHO. Severe Acute Respiratory Syndrome (SARS): laboratory diagnostic tests. 2020.</Citation>
</Reference>
<Reference>
<Citation>US CDC. CDC laboratory testing for Middle East respiratory syndrome coronavirus (MERS-CoV). 2020.</Citation>
</Reference>
<Reference>
<Citation>Wang N, Li SY, Yang XL, et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virol Sin. 2018;33(1):104-107.</Citation>
</Reference>
<Reference>
<Citation>Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382:1177-1179.</Citation>
</Reference>
<Reference>
<Citation>Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929-936.</Citation>
</Reference>
<Reference>
<Citation>Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020. https://doi.org/10.1001/jama.2020.3204</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000004 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000004 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32302058
   |texte=   Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:32302058" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021