Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The dnaA initiator protein binds separate domains in the replication origin of Escherichia coli.

Identifieur interne : 002A42 ( PubMed/Corpus ); précédent : 002A41; suivant : 002A43

The dnaA initiator protein binds separate domains in the replication origin of Escherichia coli.

Auteurs : B Y Yung ; A. Kornberg

Source :

RBID : pubmed:2539372

English descriptors

Abstract

After binding to its four 9-mer boxes in the 245-base pair Escherichia coli replication origin (oriC), dnaA protein effects the formation of an "open complex" in an adjacent region made up of three 13-mers (Bramhill, D., and Kornberg, A. (1988) Cell 52, 743-755). This open complex formation requires the ATP form of dnaA protein assisted by HU protein (Sekimizu, K., Bramhill, D., and Kornberg, A. (1987) Cell 50, 259-265). We now provide direct evidence that dnaA protein binds the 13-mers, sequences that bear no resemblance to the 9-mer box. The evidence is (i) displacement of dnaA protein from the open complex by oriC or by a synthetic oligonucleotide containing the 13-mers, but not by a mutant of oriC lacking the 13-mers; (ii) filter binding of the synthetic (13-mer) oligonucleotide by dnaA protein; and (iii) requirement for the ATP form of dnaA protein assisted by HU protein for temperature-dependent binding to the 13-mer region. Controlled proteolysis of dnaA protein results in a prompt loss of oriC binding; an NH2-terminal 30-kDa peptide contains the domain that binds ATP and phospholipids known to destabilize the tightly bound ATP.

PubMed: 2539372

Links to Exploration step

pubmed:2539372

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The dnaA initiator protein binds separate domains in the replication origin of Escherichia coli.</title>
<author>
<name sortKey="Yung, B Y" sort="Yung, B Y" uniqKey="Yung B" first="B Y" last="Yung">B Y Yung</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Stanford University School of Medicine, California 94305-5307.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kornberg, A" sort="Kornberg, A" uniqKey="Kornberg A" first="A" last="Kornberg">A. Kornberg</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1989">1989</date>
<idno type="RBID">pubmed:2539372</idno>
<idno type="pmid">2539372</idno>
<idno type="wicri:Area/PubMed/Corpus">002A42</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The dnaA initiator protein binds separate domains in the replication origin of Escherichia coli.</title>
<author>
<name sortKey="Yung, B Y" sort="Yung, B Y" uniqKey="Yung B" first="B Y" last="Yung">B Y Yung</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Stanford University School of Medicine, California 94305-5307.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kornberg, A" sort="Kornberg, A" uniqKey="Kornberg A" first="A" last="Kornberg">A. Kornberg</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="1989" type="published">1989</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Diphosphate (metabolism)</term>
<term>Adenosine Triphosphate (metabolism)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Binding, Competitive</term>
<term>DNA Replication</term>
<term>DNA, Bacterial (metabolism)</term>
<term>DNA, Superhelical (metabolism)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Escherichia coli (metabolism)</term>
<term>Peptide Fragments (metabolism)</term>
<term>Plasmids</term>
<term>Regulatory Sequences, Nucleic Acid</term>
<term>Structure-Activity Relationship</term>
<term>Temperature</term>
<term>Trypsin (pharmacology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Diphosphate</term>
<term>Adenosine Triphosphate</term>
<term>Bacterial Proteins</term>
<term>DNA, Bacterial</term>
<term>DNA, Superhelical</term>
<term>DNA-Binding Proteins</term>
<term>Peptide Fragments</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Trypsin</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding, Competitive</term>
<term>DNA Replication</term>
<term>Plasmids</term>
<term>Regulatory Sequences, Nucleic Acid</term>
<term>Structure-Activity Relationship</term>
<term>Temperature</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">After binding to its four 9-mer boxes in the 245-base pair Escherichia coli replication origin (oriC), dnaA protein effects the formation of an "open complex" in an adjacent region made up of three 13-mers (Bramhill, D., and Kornberg, A. (1988) Cell 52, 743-755). This open complex formation requires the ATP form of dnaA protein assisted by HU protein (Sekimizu, K., Bramhill, D., and Kornberg, A. (1987) Cell 50, 259-265). We now provide direct evidence that dnaA protein binds the 13-mers, sequences that bear no resemblance to the 9-mer box. The evidence is (i) displacement of dnaA protein from the open complex by oriC or by a synthetic oligonucleotide containing the 13-mers, but not by a mutant of oriC lacking the 13-mers; (ii) filter binding of the synthetic (13-mer) oligonucleotide by dnaA protein; and (iii) requirement for the ATP form of dnaA protein assisted by HU protein for temperature-dependent binding to the 13-mer region. Controlled proteolysis of dnaA protein results in a prompt loss of oriC binding; an NH2-terminal 30-kDa peptide contains the domain that binds ATP and phospholipids known to destabilize the tightly bound ATP.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">2539372</PMID>
<DateCompleted>
<Year>1989</Year>
<Month>05</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>264</Volume>
<Issue>11</Issue>
<PubDate>
<Year>1989</Year>
<Month>Apr</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J. Biol. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>The dnaA initiator protein binds separate domains in the replication origin of Escherichia coli.</ArticleTitle>
<Pagination>
<MedlinePgn>6146-50</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>After binding to its four 9-mer boxes in the 245-base pair Escherichia coli replication origin (oriC), dnaA protein effects the formation of an "open complex" in an adjacent region made up of three 13-mers (Bramhill, D., and Kornberg, A. (1988) Cell 52, 743-755). This open complex formation requires the ATP form of dnaA protein assisted by HU protein (Sekimizu, K., Bramhill, D., and Kornberg, A. (1987) Cell 50, 259-265). We now provide direct evidence that dnaA protein binds the 13-mers, sequences that bear no resemblance to the 9-mer box. The evidence is (i) displacement of dnaA protein from the open complex by oriC or by a synthetic oligonucleotide containing the 13-mers, but not by a mutant of oriC lacking the 13-mers; (ii) filter binding of the synthetic (13-mer) oligonucleotide by dnaA protein; and (iii) requirement for the ATP form of dnaA protein assisted by HU protein for temperature-dependent binding to the 13-mer region. Controlled proteolysis of dnaA protein results in a prompt loss of oriC binding; an NH2-terminal 30-kDa peptide contains the domain that binds ATP and phospholipids known to destabilize the tightly bound ATP.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yung</LastName>
<ForeName>B Y</ForeName>
<Initials>BY</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Stanford University School of Medicine, California 94305-5307.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kornberg</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004278">DNA, Superhelical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>61D2G4IYVH</RegistryNumber>
<NameOfSubstance UI="D000244">Adenosine Diphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.4</RegistryNumber>
<NameOfSubstance UI="D014357">Trypsin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000244" MajorTopicYN="N">Adenosine Diphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001667" MajorTopicYN="N">Binding, Competitive</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="Y">DNA Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004278" MajorTopicYN="N">DNA, Superhelical</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010446" MajorTopicYN="N">Peptide Fragments</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012045" MajorTopicYN="N">Regulatory Sequences, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014357" MajorTopicYN="N">Trypsin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1989</Year>
<Month>4</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1989</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1989</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">2539372</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002A42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:2539372
   |texte=   The dnaA initiator protein binds separate domains in the replication origin of Escherichia coli.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:2539372" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021