Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages.

Identifieur interne : 002977 ( PubMed/Corpus ); précédent : 002976; suivant : 002978

Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages.

Auteurs : Y. Shoji ; S. Akhtar ; A. Periasamy ; B. Herman ; R L Juliano

Source :

RBID : pubmed:1658734

English descriptors

Abstract

The cellular uptake and intracellular distribution of methylphosphonate oligonucleotides (15 mers) has been examined using both 32P labeled and fluorescent labeled oligonucleotides. The cellular uptake process for methylphosphonate oligonucleotides is highly temperature dependent, with a major increase in uptake occurring between 15 and 20 degrees C. Most of the label which becomes cell associated at 37 degrees C cannot be removed by acid washing or trypsinization and thus seems to be within the cell. Visualization of rhodamine labeled methylphosphonate oligonucleotides using digital imaging fluorescence microscopy reveals a vesicular subcellular distribution suggestive of an endosomal localization. There was extensive co-localization of rhodamine labeled methylphosphonate oligonucleotides with fluorescein-dextran, an endosomal/lysosomal marker substance. The apparent endocytotic uptake of labeled methylphosphonate oligonucleotides could not be blocked by competition with unlabeled methylphosphonate or phosphodiester oligonucleotides, nor by ATP. This contrasts with the situation for radiolabeled phosphodiester oligonucleotides whose uptake can be completely blocked with unlabeled competitor. Uptake of phosphodiester oligonucleotides, but not of methylphosphonate oligonucleotides, could be blocked by acidification of the cytosol. These observations suggest that the pathway of cellular uptake of methylphosphonate oligonucleotides involves fluid phase or adsorbtive endocytosis, and is distinct from the uptake pathway for phosphodiester oligonucleotides.

DOI: 10.1093/nar/19.20.5543
PubMed: 1658734

Links to Exploration step

pubmed:1658734

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages.</title>
<author>
<name sortKey="Shoji, Y" sort="Shoji, Y" uniqKey="Shoji Y" first="Y" last="Shoji">Y. Shoji</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology, University of North Carolina, Chapel Hill 27599.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Akhtar, S" sort="Akhtar, S" uniqKey="Akhtar S" first="S" last="Akhtar">S. Akhtar</name>
</author>
<author>
<name sortKey="Periasamy, A" sort="Periasamy, A" uniqKey="Periasamy A" first="A" last="Periasamy">A. Periasamy</name>
</author>
<author>
<name sortKey="Herman, B" sort="Herman, B" uniqKey="Herman B" first="B" last="Herman">B. Herman</name>
</author>
<author>
<name sortKey="Juliano, R L" sort="Juliano, R L" uniqKey="Juliano R" first="R L" last="Juliano">R L Juliano</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1991">1991</date>
<idno type="RBID">pubmed:1658734</idno>
<idno type="pmid">1658734</idno>
<idno type="doi">10.1093/nar/19.20.5543</idno>
<idno type="wicri:Area/PubMed/Corpus">002977</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002977</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages.</title>
<author>
<name sortKey="Shoji, Y" sort="Shoji, Y" uniqKey="Shoji Y" first="Y" last="Shoji">Y. Shoji</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology, University of North Carolina, Chapel Hill 27599.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Akhtar, S" sort="Akhtar, S" uniqKey="Akhtar S" first="S" last="Akhtar">S. Akhtar</name>
</author>
<author>
<name sortKey="Periasamy, A" sort="Periasamy, A" uniqKey="Periasamy A" first="A" last="Periasamy">A. Periasamy</name>
</author>
<author>
<name sortKey="Herman, B" sort="Herman, B" uniqKey="Herman B" first="B" last="Herman">B. Herman</name>
</author>
<author>
<name sortKey="Juliano, R L" sort="Juliano, R L" uniqKey="Juliano R" first="R L" last="Juliano">R L Juliano</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="ISSN">0305-1048</idno>
<imprint>
<date when="1991" type="published">1991</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Binding, Competitive</term>
<term>Biological Transport</term>
<term>Cell Line</term>
<term>Cell Membrane (metabolism)</term>
<term>Cricetinae</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Endocytosis</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Image Processing, Computer-Assisted</term>
<term>Kinetics</term>
<term>Molecular Sequence Data</term>
<term>Oligodeoxyribonucleotides (chemistry)</term>
<term>Oligodeoxyribonucleotides (metabolism)</term>
<term>Organophosphorus Compounds (chemistry)</term>
<term>Organophosphorus Compounds (metabolism)</term>
<term>Phosphorus Radioisotopes</term>
<term>Receptors, Cell Surface (antagonists & inhibitors)</term>
<term>Rhodamines</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Receptors, Cell Surface</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Oligodeoxyribonucleotides</term>
<term>Organophosphorus Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Oligodeoxyribonucleotides</term>
<term>Organophosphorus Compounds</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Binding, Competitive</term>
<term>Biological Transport</term>
<term>Cell Line</term>
<term>Cricetinae</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Endocytosis</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Image Processing, Computer-Assisted</term>
<term>Kinetics</term>
<term>Molecular Sequence Data</term>
<term>Phosphorus Radioisotopes</term>
<term>Rhodamines</term>
<term>Temperature</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The cellular uptake and intracellular distribution of methylphosphonate oligonucleotides (15 mers) has been examined using both 32P labeled and fluorescent labeled oligonucleotides. The cellular uptake process for methylphosphonate oligonucleotides is highly temperature dependent, with a major increase in uptake occurring between 15 and 20 degrees C. Most of the label which becomes cell associated at 37 degrees C cannot be removed by acid washing or trypsinization and thus seems to be within the cell. Visualization of rhodamine labeled methylphosphonate oligonucleotides using digital imaging fluorescence microscopy reveals a vesicular subcellular distribution suggestive of an endosomal localization. There was extensive co-localization of rhodamine labeled methylphosphonate oligonucleotides with fluorescein-dextran, an endosomal/lysosomal marker substance. The apparent endocytotic uptake of labeled methylphosphonate oligonucleotides could not be blocked by competition with unlabeled methylphosphonate or phosphodiester oligonucleotides, nor by ATP. This contrasts with the situation for radiolabeled phosphodiester oligonucleotides whose uptake can be completely blocked with unlabeled competitor. Uptake of phosphodiester oligonucleotides, but not of methylphosphonate oligonucleotides, could be blocked by acidification of the cytosol. These observations suggest that the pathway of cellular uptake of methylphosphonate oligonucleotides involves fluid phase or adsorbtive endocytosis, and is distinct from the uptake pathway for phosphodiester oligonucleotides.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">1658734</PMID>
<DateCompleted>
<Year>1991</Year>
<Month>12</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0305-1048</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>19</Volume>
<Issue>20</Issue>
<PubDate>
<Year>1991</Year>
<Month>Oct</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages.</ArticleTitle>
<Pagination>
<MedlinePgn>5543-50</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The cellular uptake and intracellular distribution of methylphosphonate oligonucleotides (15 mers) has been examined using both 32P labeled and fluorescent labeled oligonucleotides. The cellular uptake process for methylphosphonate oligonucleotides is highly temperature dependent, with a major increase in uptake occurring between 15 and 20 degrees C. Most of the label which becomes cell associated at 37 degrees C cannot be removed by acid washing or trypsinization and thus seems to be within the cell. Visualization of rhodamine labeled methylphosphonate oligonucleotides using digital imaging fluorescence microscopy reveals a vesicular subcellular distribution suggestive of an endosomal localization. There was extensive co-localization of rhodamine labeled methylphosphonate oligonucleotides with fluorescein-dextran, an endosomal/lysosomal marker substance. The apparent endocytotic uptake of labeled methylphosphonate oligonucleotides could not be blocked by competition with unlabeled methylphosphonate or phosphodiester oligonucleotides, nor by ATP. This contrasts with the situation for radiolabeled phosphodiester oligonucleotides whose uptake can be completely blocked with unlabeled competitor. Uptake of phosphodiester oligonucleotides, but not of methylphosphonate oligonucleotides, could be blocked by acidification of the cytosol. These observations suggest that the pathway of cellular uptake of methylphosphonate oligonucleotides involves fluid phase or adsorbtive endocytosis, and is distinct from the uptake pathway for phosphodiester oligonucleotides.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shoji</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, University of North Carolina, Chapel Hill 27599.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Akhtar</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Periasamy</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Herman</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Juliano</LastName>
<ForeName>R L</ForeName>
<Initials>RL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA47044</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009838">Oligodeoxyribonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010761">Phosphorus Radioisotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011956">Receptors, Cell Surface</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012235">Rhodamines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>329W4YM10Z</RegistryNumber>
<NameOfSubstance UI="C032627">methylphosphonic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001667" MajorTopicYN="N">Binding, Competitive</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006224" MajorTopicYN="N">Cricetinae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004705" MajorTopicYN="N">Endocytosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007091" MajorTopicYN="N">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009838" MajorTopicYN="N">Oligodeoxyribonucleotides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009943" MajorTopicYN="N">Organophosphorus Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010761" MajorTopicYN="N">Phosphorus Radioisotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011956" MajorTopicYN="N">Receptors, Cell Surface</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012235" MajorTopicYN="N">Rhodamines</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1991</Year>
<Month>10</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1991</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1991</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">1658734</ArticleId>
<ArticleId IdType="pmc">PMC328955</ArticleId>
<ArticleId IdType="doi">10.1093/nar/19.20.5543</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2702-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1849273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1969 Jan 1;129(1):227-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5782769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1989 Feb;83(2):386-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2536397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1987 Aug;105(2):679-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2887575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1987 Jan 1-7;325(6099):78-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3099216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Sep;86(17):6454-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2549537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 May;83(9):2787-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3010316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharm Res. 1988 Sep;5(9):539-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3073387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1987 Dec;105(6 Pt 1):2713-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2447097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 1989;117:131-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2573583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Oct;86(20):7790-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2682627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 May;86(10):3474-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2726730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1988 Aug 3;948(1):87-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2899442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 1;6(12):3601-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3428267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Biophys Methods. 1986 Sep;13(2):97-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3772027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1990 Jun 21;1049(2):99-125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1694695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 1990 Mar;142(3):574-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2138162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1983 Jan;96(1):1-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6298247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1981 Mar 31;20(7):1874-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7013804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 1978 Jan;71(1):93-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">621494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Biol. 1990 Dec;2(12):1091-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1708281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002977 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002977 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:1658734
   |texte=   Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:1658734" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021