Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cleavage of full-length beta APP mRNA by hammerhead ribozymes.

Identifieur interne : 002913 ( PubMed/Corpus ); précédent : 002912; suivant : 002914

Cleavage of full-length beta APP mRNA by hammerhead ribozymes.

Auteurs : R B Denman

Source :

RBID : pubmed:8371986

English descriptors

Abstract

The sequences surrounding the first 5'GUC3' in the mRNA encoding the Alzheimer amyloid peptide precursor (beta APP) were used to construct a pair of transacting hammerhead ribozymes. Each ribozyme contained the conserved core bases of the hammerhead motif found in the positive strand of satellite RNA of tobacco ringspot virus [(+)sTRSV] and two stems, 7 and 8 bases long, complementary to the target, beta APP mRNA. However, one of the ribozyme cleaving strands was lengthened at its 3' end to include the early splicing and polyadenylation signal sequences of SV40 viral RNA. This RNA, therefore, more closely mimics transcripts produced by RNA polymerase II from eucaryotic expression vectors in vivo. RNA, prepared by run-off transcription of cDNA oligonucleotide or plasmid constructs containing a T7 RNA polymerase promoter was used to characterize several properties of the cleavage reaction. In the presence of both ribozyme cleaving strands magnesium-ion dependent cleavage of a model 26 base beta APP substrate RNA or full-length beta APP-751 mRNA was observed at the hammerhead consensus cleavage site. Neither ribozyme was active against non-message homologs of beta APP mRNA, nor was cleavage detected when point mutations were made in the conserved core sequences. However, the kcat/Km at 37 degrees C in 10 mM Mg+2 of the longer ribozyme was reduced twenty-fold when model and full-length substrates were compared. The use of short deoxyoligonucleotides (13-17 mers) that bind upstream of the ribozyme was found to enhance the rate of cleavage of the full-length but not beta APP model substrate RNAs. The rate of enhancement depended on both the length of the deoxyoligonucleotide used as well as its site of binding with respect to the ribozyme. These data demonstrate the utility of ribozymes to cleave target RNAs in a catalytic, site-specific fashion in vitro. Direct comparison of the efficiency of different ribozyme constructs and different modulating activities provide an experimental strategy for designing more effective ribozymes for therapeutic purposes.

DOI: 10.1093/nar/21.17.4119
PubMed: 8371986

Links to Exploration step

pubmed:8371986

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cleavage of full-length beta APP mRNA by hammerhead ribozymes.</title>
<author>
<name sortKey="Denman, R B" sort="Denman, R B" uniqKey="Denman R" first="R B" last="Denman">R B Denman</name>
<affiliation>
<nlm:affiliation>New York Institute for Basic Research in Developmental Disabilities, Staten Island 10314.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1993">1993</date>
<idno type="RBID">pubmed:8371986</idno>
<idno type="pmid">8371986</idno>
<idno type="doi">10.1093/nar/21.17.4119</idno>
<idno type="wicri:Area/PubMed/Corpus">002913</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002913</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cleavage of full-length beta APP mRNA by hammerhead ribozymes.</title>
<author>
<name sortKey="Denman, R B" sort="Denman, R B" uniqKey="Denman R" first="R B" last="Denman">R B Denman</name>
<affiliation>
<nlm:affiliation>New York Institute for Basic Research in Developmental Disabilities, Staten Island 10314.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="ISSN">0305-1048</idno>
<imprint>
<date when="1993" type="published">1993</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amyloid beta-Protein Precursor (genetics)</term>
<term>Base Sequence</term>
<term>Kinetics</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>RNA, Catalytic (metabolism)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Amyloid beta-Protein Precursor</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Catalytic</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Kinetics</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Substrate Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The sequences surrounding the first 5'GUC3' in the mRNA encoding the Alzheimer amyloid peptide precursor (beta APP) were used to construct a pair of transacting hammerhead ribozymes. Each ribozyme contained the conserved core bases of the hammerhead motif found in the positive strand of satellite RNA of tobacco ringspot virus [(+)sTRSV] and two stems, 7 and 8 bases long, complementary to the target, beta APP mRNA. However, one of the ribozyme cleaving strands was lengthened at its 3' end to include the early splicing and polyadenylation signal sequences of SV40 viral RNA. This RNA, therefore, more closely mimics transcripts produced by RNA polymerase II from eucaryotic expression vectors in vivo. RNA, prepared by run-off transcription of cDNA oligonucleotide or plasmid constructs containing a T7 RNA polymerase promoter was used to characterize several properties of the cleavage reaction. In the presence of both ribozyme cleaving strands magnesium-ion dependent cleavage of a model 26 base beta APP substrate RNA or full-length beta APP-751 mRNA was observed at the hammerhead consensus cleavage site. Neither ribozyme was active against non-message homologs of beta APP mRNA, nor was cleavage detected when point mutations were made in the conserved core sequences. However, the kcat/Km at 37 degrees C in 10 mM Mg+2 of the longer ribozyme was reduced twenty-fold when model and full-length substrates were compared. The use of short deoxyoligonucleotides (13-17 mers) that bind upstream of the ribozyme was found to enhance the rate of cleavage of the full-length but not beta APP model substrate RNAs. The rate of enhancement depended on both the length of the deoxyoligonucleotide used as well as its site of binding with respect to the ribozyme. These data demonstrate the utility of ribozymes to cleave target RNAs in a catalytic, site-specific fashion in vitro. Direct comparison of the efficiency of different ribozyme constructs and different modulating activities provide an experimental strategy for designing more effective ribozymes for therapeutic purposes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8371986</PMID>
<DateCompleted>
<Year>1993</Year>
<Month>10</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0305-1048</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>21</Volume>
<Issue>17</Issue>
<PubDate>
<Year>1993</Year>
<Month>Aug</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Cleavage of full-length beta APP mRNA by hammerhead ribozymes.</ArticleTitle>
<Pagination>
<MedlinePgn>4119-25</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The sequences surrounding the first 5'GUC3' in the mRNA encoding the Alzheimer amyloid peptide precursor (beta APP) were used to construct a pair of transacting hammerhead ribozymes. Each ribozyme contained the conserved core bases of the hammerhead motif found in the positive strand of satellite RNA of tobacco ringspot virus [(+)sTRSV] and two stems, 7 and 8 bases long, complementary to the target, beta APP mRNA. However, one of the ribozyme cleaving strands was lengthened at its 3' end to include the early splicing and polyadenylation signal sequences of SV40 viral RNA. This RNA, therefore, more closely mimics transcripts produced by RNA polymerase II from eucaryotic expression vectors in vivo. RNA, prepared by run-off transcription of cDNA oligonucleotide or plasmid constructs containing a T7 RNA polymerase promoter was used to characterize several properties of the cleavage reaction. In the presence of both ribozyme cleaving strands magnesium-ion dependent cleavage of a model 26 base beta APP substrate RNA or full-length beta APP-751 mRNA was observed at the hammerhead consensus cleavage site. Neither ribozyme was active against non-message homologs of beta APP mRNA, nor was cleavage detected when point mutations were made in the conserved core sequences. However, the kcat/Km at 37 degrees C in 10 mM Mg+2 of the longer ribozyme was reduced twenty-fold when model and full-length substrates were compared. The use of short deoxyoligonucleotides (13-17 mers) that bind upstream of the ribozyme was found to enhance the rate of cleavage of the full-length but not beta APP model substrate RNAs. The rate of enhancement depended on both the length of the deoxyoligonucleotide used as well as its site of binding with respect to the ribozyme. These data demonstrate the utility of ribozymes to cleave target RNAs in a catalytic, site-specific fashion in vitro. Direct comparison of the efficiency of different ribozyme constructs and different modulating activities provide an experimental strategy for designing more effective ribozymes for therapeutic purposes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Denman</LastName>
<ForeName>R B</ForeName>
<Initials>RB</Initials>
<AffiliationInfo>
<Affiliation>New York Institute for Basic Research in Developmental Disabilities, Staten Island 10314.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AGO4221</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016564">Amyloid beta-Protein Precursor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016337">RNA, Catalytic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016564" MajorTopicYN="N">Amyloid beta-Protein Precursor</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016337" MajorTopicYN="N">RNA, Catalytic</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1993</Year>
<Month>8</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1993</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1993</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8371986</ArticleId>
<ArticleId IdType="pmc">PMC310017</ArticleId>
<ArticleId IdType="doi">10.1093/nar/21.17.4119</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1991 Oct 4;254(5028):97-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1925564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Dec 1;8(12):3861-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2684648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Oct 31;353(6347):844-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1944558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jan 25;267(3):1904-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1730726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Feb 20;223(4):831-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1538398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Oct 11;19(19):5313-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1717946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Jun 5;256(5062):1420-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1604316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Alzheimer Dis Assoc Disord. 1992 Spring;6(1):7-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1605946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antisense Res Dev. 1991 Fall;1(3):261-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1668256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1992 Jul 31;186(2):1171-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1379801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1992 Aug 14;186(3):1271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1510661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Sep 24;359(6393):322-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1383826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Sep 24;359(6393):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1406936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Sep 11;20(17):4581-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1408760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Sep 11;20(17):4607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1383929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1992 Dec;11(12):4411-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1425576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Dec 1;31(47):11843-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1445917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Nov 11;20(21):5737-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1280808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Dec 8;31(48):12042-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1280996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Dec 17;360(6405):672-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1465129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Dec 25;20(24):6681-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1282703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1992 Aug;1(5):345-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1302033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Sci. 1976 Feb;27(2):173-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">129541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Aug;76(8):3751-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">91169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1981 Apr 10;9(7):1723-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6164994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Mar;87(5):1668-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1689847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1989 Feb;7(2):138-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2629843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Jun 1;248(4959):1124-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2111584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1989 Dec;3(6):689-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2518372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Oct 5;265(28):17106-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2211612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Nov 20;29(46):10573-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2271667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Nov 27;29(47):10695-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1703005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Feb 21;349(6311):704-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1671712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Feb 11;19(3):559-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2011528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 May 28;30(21):5145-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2036380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7303-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1871136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1991 Jul;288(1):29-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1680310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1983 Nov;14(5):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6139975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1984 May 16;120(3):885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6375662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 Feb 5;187(3):399-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2422386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2432595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1987 Feb 15;253(1):214-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2434026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1987 Feb 19-25;325(6106):733-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2881207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1987 Apr 21;26(8):2353-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3304424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1988 Jan 11;16(1):165-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3277159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 1987 Oct;69(10):1105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2450591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Jul 8;241(4862):223-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2968652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Feb 7;28(3):1002-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2540813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1989 Jul 14;162(1):83-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2502115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Sep 14;341(6238):144-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2506449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Dec;11(12):6109-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1944278</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002913 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002913 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:8371986
   |texte=   Cleavage of full-length beta APP mRNA by hammerhead ribozymes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:8371986" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021