Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Linear mitochondrial genome organization in vivo in the genus Pythium.

Identifieur interne : 002813 ( PubMed/Corpus ); précédent : 002812; suivant : 002814

Linear mitochondrial genome organization in vivo in the genus Pythium.

Auteurs : F N Martin

Source :

RBID : pubmed:8529268

English descriptors

Abstract

Pulsed-field gel electrophoresis (PFGE) of isolates of Pythium oligandrum with linear mitochondrial genomes revealed a distinct band in ethidium bromide-stained gels similar in size to values estimated by restriction mapping of mitochondrial DNA (mtDNA). Southern analysis confirmed that these bands were mtDNA and indicated that linear genomes were present in unit-length size as well as multimers. Isolates of this species with circular mtDNA restriction maps also had low levels of linear mono- and multimers visualized by Southern analysis of PFGE gels. Examination of 17 additional species revealed similar results; three species had distinct linear mtDNA bands in ethidium bromide-stained gels while the remainder had linear mono- and multi-mers in lower amounts detected only by Southern analysis. Sequence analysis of an isolate of P. oligandrum with a primarily circular mitochondrial genomic map and a low amount of linear molecules revealed that the small unique region of the circular map (which corresponded to the terminal region of linear genomes) was flanked by palindromic intrastrand complementary sequences separated by a unique 194-bp sequence. Sequences with similarity to ATPase9 coding regions from other organisms were located adjacent to this region. Sequences with similarity to mitochondrial origins of replication and autonomously replicating sequences were also located in this region: their potential involvement in the generation of linear molecules is discussed.

DOI: 10.1007/bf00309781
PubMed: 8529268

Links to Exploration step

pubmed:8529268

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Linear mitochondrial genome organization in vivo in the genus Pythium.</title>
<author>
<name sortKey="Martin, F N" sort="Martin, F N" uniqKey="Martin F" first="F N" last="Martin">F N Martin</name>
<affiliation>
<nlm:affiliation>Plant Pathology Department, University of Florida, Gainesville 32611, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1995">1995</date>
<idno type="RBID">pubmed:8529268</idno>
<idno type="pmid">8529268</idno>
<idno type="doi">10.1007/bf00309781</idno>
<idno type="wicri:Area/PubMed/Corpus">002813</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002813</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Linear mitochondrial genome organization in vivo in the genus Pythium.</title>
<author>
<name sortKey="Martin, F N" sort="Martin, F N" uniqKey="Martin F" first="F N" last="Martin">F N Martin</name>
<affiliation>
<nlm:affiliation>Plant Pathology Department, University of Florida, Gainesville 32611, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current genetics</title>
<idno type="ISSN">0172-8083</idno>
<imprint>
<date when="1995" type="published">1995</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphatases (genetics)</term>
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Chromosome Mapping</term>
<term>DNA, Fungal (genetics)</term>
<term>DNA, Mitochondrial (genetics)</term>
<term>Electrophoresis, Gel, Pulsed-Field</term>
<term>Fungal Proteins (genetics)</term>
<term>Genome, Fungal</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Plant Proteins (genetics)</term>
<term>Pythium (genetics)</term>
<term>Sequence Alignment</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>DNA, Fungal</term>
<term>DNA, Mitochondrial</term>
<term>Fungal Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pythium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Chromosome Mapping</term>
<term>Electrophoresis, Gel, Pulsed-Field</term>
<term>Genome, Fungal</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Sequence Alignment</term>
<term>Species Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pulsed-field gel electrophoresis (PFGE) of isolates of Pythium oligandrum with linear mitochondrial genomes revealed a distinct band in ethidium bromide-stained gels similar in size to values estimated by restriction mapping of mitochondrial DNA (mtDNA). Southern analysis confirmed that these bands were mtDNA and indicated that linear genomes were present in unit-length size as well as multimers. Isolates of this species with circular mtDNA restriction maps also had low levels of linear mono- and multimers visualized by Southern analysis of PFGE gels. Examination of 17 additional species revealed similar results; three species had distinct linear mtDNA bands in ethidium bromide-stained gels while the remainder had linear mono- and multi-mers in lower amounts detected only by Southern analysis. Sequence analysis of an isolate of P. oligandrum with a primarily circular mitochondrial genomic map and a low amount of linear molecules revealed that the small unique region of the circular map (which corresponded to the terminal region of linear genomes) was flanked by palindromic intrastrand complementary sequences separated by a unique 194-bp sequence. Sequences with similarity to ATPase9 coding regions from other organisms were located adjacent to this region. Sequences with similarity to mitochondrial origins of replication and autonomously replicating sequences were also located in this region: their potential involvement in the generation of linear molecules is discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8529268</PMID>
<DateCompleted>
<Year>1996</Year>
<Month>01</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0172-8083</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>28</Volume>
<Issue>3</Issue>
<PubDate>
<Year>1995</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Current genetics</Title>
<ISOAbbreviation>Curr. Genet.</ISOAbbreviation>
</Journal>
<ArticleTitle>Linear mitochondrial genome organization in vivo in the genus Pythium.</ArticleTitle>
<Pagination>
<MedlinePgn>225-34</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Pulsed-field gel electrophoresis (PFGE) of isolates of Pythium oligandrum with linear mitochondrial genomes revealed a distinct band in ethidium bromide-stained gels similar in size to values estimated by restriction mapping of mitochondrial DNA (mtDNA). Southern analysis confirmed that these bands were mtDNA and indicated that linear genomes were present in unit-length size as well as multimers. Isolates of this species with circular mtDNA restriction maps also had low levels of linear mono- and multimers visualized by Southern analysis of PFGE gels. Examination of 17 additional species revealed similar results; three species had distinct linear mtDNA bands in ethidium bromide-stained gels while the remainder had linear mono- and multi-mers in lower amounts detected only by Southern analysis. Sequence analysis of an isolate of P. oligandrum with a primarily circular mitochondrial genomic map and a low amount of linear molecules revealed that the small unique region of the circular map (which corresponded to the terminal region of linear genomes) was flanked by palindromic intrastrand complementary sequences separated by a unique 194-bp sequence. Sequences with similarity to ATPase9 coding regions from other organisms were located adjacent to this region. Sequences with similarity to mitochondrial origins of replication and autonomously replicating sequences were also located in this region: their potential involvement in the generation of linear molecules is discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>F N</ForeName>
<Initials>FN</Initials>
<AffiliationInfo>
<Affiliation>Plant Pathology Department, University of Florida, Gainesville 32611, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>L16863</AccessionNumber>
<AccessionNumber>U28355</AccessionNumber>
<AccessionNumber>X59801</AccessionNumber>
<AccessionNumber>X74411</AccessionNumber>
<AccessionNumber>Z11593</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Curr Genet</MedlineTA>
<NlmUniqueID>8004904</NlmUniqueID>
<ISSNLinking>0172-8083</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004272">DNA, Mitochondrial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D000251">Adenosine Triphosphatases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000251" MajorTopicYN="N">Adenosine Triphosphatases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004272" MajorTopicYN="N">DNA, Mitochondrial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016521" MajorTopicYN="N">Electrophoresis, Gel, Pulsed-Field</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="Y">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011775" MajorTopicYN="N">Pythium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1995</Year>
<Month>8</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1995</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1995</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8529268</ArticleId>
<ArticleId IdType="doi">10.1007/bf00309781</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 1992 Aug 14;186(3):1669-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1387311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1978 Jul;75(7):3268-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">277923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Apr;13(4):2315-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8455613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Nov;81(22):7156-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6390432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1990 Apr;8(4):370-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1692715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11558-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8265589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1991 May;32(5):439-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1904099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1975 Oct 5;97(4):593-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1185783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1985;36(1-2):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2415428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1982 Mar 29;696(3):290-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6279157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1984 Sep;3(9):2115-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6092055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1988 Aug;14(2):163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2846190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1982 Apr;28(4):693-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6178513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Dec;10(12):3923-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1935911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Apr;13(4):2309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8455612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1991 Dec;231(1):53-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1753945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1985;10(4):269-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2900696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Jun 11;15(11):4692</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2884626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1992 Oct;22(4):341-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1394519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1987 May 14;144(3):1257-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2883974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1986 Aug 11;14(15):6247-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3529036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1983 Feb 15;164(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6188838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Apr;84(8):2391-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3031682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1984;197(3):420-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6098800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1993 Oct;24(4):279-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8252636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 1994 Jun;103(3):162-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7924618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Feb;82(4):1015-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1990 Jan;220(2):165-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2325620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 May 1;256(5057):622-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1585174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 May;9(5):1917-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2664462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1968 May;60(1):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16591633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1992 Mar;21(3):197-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1563044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1986 Sep;2(3):179-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3333307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1984 Dec;32(3):439-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6397406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Jun;172(6):3163-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2345140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Apr;121(4):693-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2524421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1988 Apr;8(4):1469-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2967910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1991 Dec;20(6):483-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1838309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 1983;47 Pt 2:723-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6574869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Dec;78(12):7341-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6950379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 1992;141:89-127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1452434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1981 May;1(5):387-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6965104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Theor Electrophor. 1993;3(6):259-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8199217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1989 Oct;13(4):459-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2491666</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002813 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002813 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:8529268
   |texte=   Linear mitochondrial genome organization in vivo in the genus Pythium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:8529268" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021