Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Abasic sites in duplex DNA: molecular modeling of sequence-dependent effects on conformation.

Identifieur interne : 002609 ( PubMed/Corpus ); précédent : 002608; suivant : 002610

Abasic sites in duplex DNA: molecular modeling of sequence-dependent effects on conformation.

Auteurs : L. Ayadi ; C. Coulombeau ; R. Lavery

Source :

RBID : pubmed:10585943

English descriptors

Abstract

Molecular modeling calculations using JUnction Minimization of Nucleic Acids (JUMNA) have been used to study sequence effects on the conformation of abasic sites within duplex DNA. We have considered lesions leading to all possible unpaired bases (X), adenine, guanine, cytosine, or thymine contained within two distinct sequence contexts, CXC and GXG. Calculations were carried out on DNA 11-mers using extensive conformational search techniques to locate the most stable abasic conformations and using Poisson-Boltzmann corrected electrostatics to account for solvation effects. The results, which are in very good agreement with available experimental data, point to strong sequence effects on both the position of the unpaired base (intra or extrahelical) and on the overall curvature induced by the abasic lesion. For CXC, unpaired purines are found to lie within the helix, while unpaired pyrimidines are either extrahelical or in equilibrium between the intra and extrahelical forms. For GXG, all unpaired bases lead to intrahelical forms, but with marked, sequence-dependent differences in induced curvature.

DOI: 10.1016/S0006-3495(99)77152-3
PubMed: 10585943

Links to Exploration step

pubmed:10585943

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Abasic sites in duplex DNA: molecular modeling of sequence-dependent effects on conformation.</title>
<author>
<name sortKey="Ayadi, L" sort="Ayadi, L" uniqKey="Ayadi L" first="L" last="Ayadi">L. Ayadi</name>
<affiliation>
<nlm:affiliation>Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, Laboratoire de Chimie Bioorganique, Université Joseph Fourier, F-38041 Grenoble, Cedex 9, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Coulombeau, C" sort="Coulombeau, C" uniqKey="Coulombeau C" first="C" last="Coulombeau">C. Coulombeau</name>
</author>
<author>
<name sortKey="Lavery, R" sort="Lavery, R" uniqKey="Lavery R" first="R" last="Lavery">R. Lavery</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10585943</idno>
<idno type="pmid">10585943</idno>
<idno type="doi">10.1016/S0006-3495(99)77152-3</idno>
<idno type="wicri:Area/PubMed/Corpus">002609</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002609</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Abasic sites in duplex DNA: molecular modeling of sequence-dependent effects on conformation.</title>
<author>
<name sortKey="Ayadi, L" sort="Ayadi, L" uniqKey="Ayadi L" first="L" last="Ayadi">L. Ayadi</name>
<affiliation>
<nlm:affiliation>Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, Laboratoire de Chimie Bioorganique, Université Joseph Fourier, F-38041 Grenoble, Cedex 9, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Coulombeau, C" sort="Coulombeau, C" uniqKey="Coulombeau C" first="C" last="Coulombeau">C. Coulombeau</name>
</author>
<author>
<name sortKey="Lavery, R" sort="Lavery, R" uniqKey="Lavery R" first="R" last="Lavery">R. Lavery</name>
</author>
</analytic>
<series>
<title level="j">Biophysical journal</title>
<idno type="ISSN">0006-3495</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Pairing</term>
<term>Base Sequence</term>
<term>Biophysical Phenomena</term>
<term>Biophysics</term>
<term>DNA (chemistry)</term>
<term>Models, Molecular</term>
<term>Nucleic Acid Conformation</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Pairing</term>
<term>Base Sequence</term>
<term>Biophysical Phenomena</term>
<term>Biophysics</term>
<term>Models, Molecular</term>
<term>Nucleic Acid Conformation</term>
<term>Thermodynamics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Molecular modeling calculations using JUnction Minimization of Nucleic Acids (JUMNA) have been used to study sequence effects on the conformation of abasic sites within duplex DNA. We have considered lesions leading to all possible unpaired bases (X), adenine, guanine, cytosine, or thymine contained within two distinct sequence contexts, CXC and GXG. Calculations were carried out on DNA 11-mers using extensive conformational search techniques to locate the most stable abasic conformations and using Poisson-Boltzmann corrected electrostatics to account for solvation effects. The results, which are in very good agreement with available experimental data, point to strong sequence effects on both the position of the unpaired base (intra or extrahelical) and on the overall curvature induced by the abasic lesion. For CXC, unpaired purines are found to lie within the helix, while unpaired pyrimidines are either extrahelical or in equilibrium between the intra and extrahelical forms. For GXG, all unpaired bases lead to intrahelical forms, but with marked, sequence-dependent differences in induced curvature.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10585943</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>02</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-3495</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>77</Volume>
<Issue>6</Issue>
<PubDate>
<Year>1999</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Biophysical journal</Title>
<ISOAbbreviation>Biophys. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Abasic sites in duplex DNA: molecular modeling of sequence-dependent effects on conformation.</ArticleTitle>
<Pagination>
<MedlinePgn>3218-26</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Molecular modeling calculations using JUnction Minimization of Nucleic Acids (JUMNA) have been used to study sequence effects on the conformation of abasic sites within duplex DNA. We have considered lesions leading to all possible unpaired bases (X), adenine, guanine, cytosine, or thymine contained within two distinct sequence contexts, CXC and GXG. Calculations were carried out on DNA 11-mers using extensive conformational search techniques to locate the most stable abasic conformations and using Poisson-Boltzmann corrected electrostatics to account for solvation effects. The results, which are in very good agreement with available experimental data, point to strong sequence effects on both the position of the unpaired base (intra or extrahelical) and on the overall curvature induced by the abasic lesion. For CXC, unpaired purines are found to lie within the helix, while unpaired pyrimidines are either extrahelical or in equilibrium between the intra and extrahelical forms. For GXG, all unpaired bases lead to intrahelical forms, but with marked, sequence-dependent differences in induced curvature.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ayadi</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, Laboratoire de Chimie Bioorganique, Université Joseph Fourier, F-38041 Grenoble, Cedex 9, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coulombeau</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lavery</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biophys J</MedlineTA>
<NlmUniqueID>0370626</NlmUniqueID>
<ISSNLinking>0006-3495</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020029" MajorTopicYN="N">Base Pairing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055592" MajorTopicYN="N">Biophysical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001703" MajorTopicYN="N">Biophysics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="Y">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2000</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10585943</ArticleId>
<ArticleId IdType="pmc">PMC1300592</ArticleId>
<ArticleId IdType="pii">S0006-3495(99)77152-3</ArticleId>
<ArticleId IdType="doi">10.1016/S0006-3495(99)77152-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1998 Oct 1;26(19):4432-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9742246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 May 19;37(20):7321-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9585546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Jun 4;289(2):261-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10366504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1972 Sep 12;11(19):3610-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4626532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1980 Feb 21;283(5749):743-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7354864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1982 Dec 21;21(26):6746-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6760893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1984 Oct 11;12(19):7435-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6548562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1986;20:201-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3545059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Jul 25;262(21):10171-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2440861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Oct 12;15(19):8003-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3671070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1988 Feb 9;27(3):924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3259144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Jul 7;334(6177):82-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3386751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Jul 7;334(6177):85-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3386752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1988;4(1):7-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3186692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Mol Mutagen. 1988;12(4):431-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2461302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1989 Feb 20;205(4):787-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2926825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Mar 7;28(5):2018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2541770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Apr 18;28(8):3373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2545258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 1988 Aug;6(1):63-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2482765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 1989 Feb;6(4):655-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2619933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 May 20;213(2):303-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2342108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biophys Chem. 1990;19:301-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2194479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Sep 18;29(37):8835-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2271560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 1991 Dec;9(3):579-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1815645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Aug 5;226(3):775-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1507226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Apr 22;362(6422):709-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8469282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1994;63:915-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7979257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Mar 23;374(6520):381-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7885481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 May 30;34(21):6947-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7766604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 1995 Aug;17(8):713-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7661852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1995 Oct;20(10):384-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8533148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 May 1;24(9):1632-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8649979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Nov 15;24(22):4572-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8948651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Apr 22;36(16):4817-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9125502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Nov 3;16(21):6548-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9351835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1997 Dec;73(6):2990-3003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9414214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 May 15;26(10):2385-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9580690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Mar 30;38(13):3985-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10194310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002609 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002609 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:10585943
   |texte=   Abasic sites in duplex DNA: molecular modeling of sequence-dependent effects on conformation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:10585943" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021