Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Escherichia coli double-strand uracil-DNA glycosylase: involvement in uracil-mediated DNA base excision repair and stimulation of activity by endonuclease IV.

Identifieur interne : 002579 ( PubMed/Corpus ); précédent : 002578; suivant : 002580

Escherichia coli double-strand uracil-DNA glycosylase: involvement in uracil-mediated DNA base excision repair and stimulation of activity by endonuclease IV.

Auteurs : J S Sung ; D W Mosbaugh

Source :

RBID : pubmed:10956012

English descriptors

Abstract

Escherichia coli double-strand uracil-DNA glycosylase (Dug) was purified to apparent homogeneity as both a native and recombinant protein. The molecular weight of recombinant Dug was 18 670, as determined by matrix-assisted laser desorption-ionization mass spectrometry. Dug was active on duplex oligonucleotides (34-mers) that contained site-specific U.G, U.A, ethenoC.G, and ethenoC.A targets; however, activity was not detected on DNA containing a T.G mispair or single-stranded DNA containing either a site-specific uracil or ethenoC residue. One of the distinctive characteristics of Dug was that the purified enzyme excised a near stoichiometric amount of uracil from U.G-containing oligonucleotide substrate. Electrophoretic mobility shift assays revealed that the lack of turnover was the result of strong binding by Dug to the reaction product apyrimidinic-site (AP) DNA. Addition of E. coli endonuclease IV stimulated Dug activity by enhancing the rate and extent of uracil excision by promoting dissociation of Dug from the AP. G-containing 34-mer. Catalytically active endonuclease IV was apparently required to mediate Dug turnover, since the addition of 5 mM EDTA mitigated the effect. Further support for this interpretation came from the observations that Dug preferentially bound 34-mer containing an AP.G target, while binding was not observed on a substrate incised 5' to the AP-site. We also investigated whether Dug could initiate a uracil-mediated base excision repair pathway in E. coli NR8052 cell extracts using M13mp2op14 DNA (form I) containing a site-specific U.G mispair. Analysis of reaction products revealed a time dependent appearance of repaired form I DNA; addition of purified Dug to the cell extract stimulated the rate of repair.

DOI: 10.1021/bi0007066
PubMed: 10956012

Links to Exploration step

pubmed:10956012

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Escherichia coli double-strand uracil-DNA glycosylase: involvement in uracil-mediated DNA base excision repair and stimulation of activity by endonuclease IV.</title>
<author>
<name sortKey="Sung, J S" sort="Sung, J S" uniqKey="Sung J" first="J S" last="Sung">J S Sung</name>
<affiliation>
<nlm:affiliation>Departments of Environmental and Molecular Toxicology and Biochemistry and Biophysics and the Environmental Health Science Center, Oregon State University, Corvallis 97731, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mosbaugh, D W" sort="Mosbaugh, D W" uniqKey="Mosbaugh D" first="D W" last="Mosbaugh">D W Mosbaugh</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:10956012</idno>
<idno type="pmid">10956012</idno>
<idno type="doi">10.1021/bi0007066</idno>
<idno type="wicri:Area/PubMed/Corpus">002579</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002579</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Escherichia coli double-strand uracil-DNA glycosylase: involvement in uracil-mediated DNA base excision repair and stimulation of activity by endonuclease IV.</title>
<author>
<name sortKey="Sung, J S" sort="Sung, J S" uniqKey="Sung J" first="J S" last="Sung">J S Sung</name>
<affiliation>
<nlm:affiliation>Departments of Environmental and Molecular Toxicology and Biochemistry and Biophysics and the Environmental Health Science Center, Oregon State University, Corvallis 97731, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mosbaugh, D W" sort="Mosbaugh, D W" uniqKey="Mosbaugh D" first="D W" last="Mosbaugh">D W Mosbaugh</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Pair Mismatch</term>
<term>Carbon-Oxygen Lyases (metabolism)</term>
<term>Cloning, Molecular</term>
<term>DNA Repair</term>
<term>DNA-(Apurinic or Apyrimidinic Site) Lyase</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>DNA-Binding Proteins (isolation & purification)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Deoxyribonuclease IV (Phage T4-Induced)</term>
<term>Escherichia coli (enzymology)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli Proteins</term>
<term>Genes, Bacterial</term>
<term>Molecular Weight</term>
<term>N-Glycosyl Hydrolases (genetics)</term>
<term>N-Glycosyl Hydrolases (isolation & purification)</term>
<term>N-Glycosyl Hydrolases (metabolism)</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>N-Glycosyl Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>N-Glycosyl Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon-Oxygen Lyases</term>
<term>DNA-Binding Proteins</term>
<term>N-Glycosyl Hydrolases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Pair Mismatch</term>
<term>Cloning, Molecular</term>
<term>DNA Repair</term>
<term>DNA-(Apurinic or Apyrimidinic Site) Lyase</term>
<term>Deoxyribonuclease IV (Phage T4-Induced)</term>
<term>Escherichia coli Proteins</term>
<term>Genes, Bacterial</term>
<term>Molecular Weight</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</term>
<term>Substrate Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Escherichia coli double-strand uracil-DNA glycosylase (Dug) was purified to apparent homogeneity as both a native and recombinant protein. The molecular weight of recombinant Dug was 18 670, as determined by matrix-assisted laser desorption-ionization mass spectrometry. Dug was active on duplex oligonucleotides (34-mers) that contained site-specific U.G, U.A, ethenoC.G, and ethenoC.A targets; however, activity was not detected on DNA containing a T.G mispair or single-stranded DNA containing either a site-specific uracil or ethenoC residue. One of the distinctive characteristics of Dug was that the purified enzyme excised a near stoichiometric amount of uracil from U.G-containing oligonucleotide substrate. Electrophoretic mobility shift assays revealed that the lack of turnover was the result of strong binding by Dug to the reaction product apyrimidinic-site (AP) DNA. Addition of E. coli endonuclease IV stimulated Dug activity by enhancing the rate and extent of uracil excision by promoting dissociation of Dug from the AP. G-containing 34-mer. Catalytically active endonuclease IV was apparently required to mediate Dug turnover, since the addition of 5 mM EDTA mitigated the effect. Further support for this interpretation came from the observations that Dug preferentially bound 34-mer containing an AP.G target, while binding was not observed on a substrate incised 5' to the AP-site. We also investigated whether Dug could initiate a uracil-mediated base excision repair pathway in E. coli NR8052 cell extracts using M13mp2op14 DNA (form I) containing a site-specific U.G mispair. Analysis of reaction products revealed a time dependent appearance of repaired form I DNA; addition of purified Dug to the cell extract stimulated the rate of repair.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10956012</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>09</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>39</Volume>
<Issue>33</Issue>
<PubDate>
<Year>2000</Year>
<Month>Aug</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Escherichia coli double-strand uracil-DNA glycosylase: involvement in uracil-mediated DNA base excision repair and stimulation of activity by endonuclease IV.</ArticleTitle>
<Pagination>
<MedlinePgn>10224-35</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Escherichia coli double-strand uracil-DNA glycosylase (Dug) was purified to apparent homogeneity as both a native and recombinant protein. The molecular weight of recombinant Dug was 18 670, as determined by matrix-assisted laser desorption-ionization mass spectrometry. Dug was active on duplex oligonucleotides (34-mers) that contained site-specific U.G, U.A, ethenoC.G, and ethenoC.A targets; however, activity was not detected on DNA containing a T.G mispair or single-stranded DNA containing either a site-specific uracil or ethenoC residue. One of the distinctive characteristics of Dug was that the purified enzyme excised a near stoichiometric amount of uracil from U.G-containing oligonucleotide substrate. Electrophoretic mobility shift assays revealed that the lack of turnover was the result of strong binding by Dug to the reaction product apyrimidinic-site (AP) DNA. Addition of E. coli endonuclease IV stimulated Dug activity by enhancing the rate and extent of uracil excision by promoting dissociation of Dug from the AP. G-containing 34-mer. Catalytically active endonuclease IV was apparently required to mediate Dug turnover, since the addition of 5 mM EDTA mitigated the effect. Further support for this interpretation came from the observations that Dug preferentially bound 34-mer containing an AP.G target, while binding was not observed on a substrate incised 5' to the AP-site. We also investigated whether Dug could initiate a uracil-mediated base excision repair pathway in E. coli NR8052 cell extracts using M13mp2op14 DNA (form I) containing a site-specific U.G mispair. Analysis of reaction products revealed a time dependent appearance of repaired form I DNA; addition of purified Dug to the cell extract stimulated the rate of repair.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sung</LastName>
<ForeName>J S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Departments of Environmental and Molecular Toxicology and Biochemistry and Biophysics and the Environmental Health Science Center, Oregon State University, Corvallis 97731, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mosbaugh</LastName>
<ForeName>D W</ForeName>
<Initials>DW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ES00210</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM32823</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.21.2</RegistryNumber>
<NameOfSubstance UI="D043223">Deoxyribonuclease IV (Phage T4-Induced)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.21.2</RegistryNumber>
<NameOfSubstance UI="C468972">endonuclease IV, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.2.-</RegistryNumber>
<NameOfSubstance UI="D009699">N-Glycosyl Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.2.-</RegistryNumber>
<NameOfSubstance UI="C412878">double-strand uracil-DNA glycosylase, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.-</RegistryNumber>
<NameOfSubstance UI="D019757">Carbon-Oxygen Lyases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.99.18</RegistryNumber>
<NameOfSubstance UI="D043603">DNA-(Apurinic or Apyrimidinic Site) Lyase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020137" MajorTopicYN="N">Base Pair Mismatch</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019757" MajorTopicYN="N">Carbon-Oxygen Lyases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004260" MajorTopicYN="Y">DNA Repair</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043603" MajorTopicYN="N">DNA-(Apurinic or Apyrimidinic Site) Lyase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043223" MajorTopicYN="N">Deoxyribonuclease IV (Phage T4-Induced)</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="Y">Escherichia coli Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="N">Genes, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009699" MajorTopicYN="N">N-Glycosyl Hydrolases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019032" MajorTopicYN="N">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2000</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>11</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10956012</ArticleId>
<ArticleId IdType="pii">bi0007066</ArticleId>
<ArticleId IdType="doi">10.1021/bi0007066</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002579 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002579 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:10956012
   |texte=   Escherichia coli double-strand uracil-DNA glycosylase: involvement in uracil-mediated DNA base excision repair and stimulation of activity by endonuclease IV.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:10956012" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021