Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Repair of oligodeoxyribonucleotides by O(6)-alkylguanine-DNA alkyltransferase.

Identifieur interne : 002502 ( PubMed/Corpus ); précédent : 002501; suivant : 002503

Repair of oligodeoxyribonucleotides by O(6)-alkylguanine-DNA alkyltransferase.

Auteurs : Kieu X. Luu ; Sreenivas Kanugula ; Anthony E. Pegg ; Gary T. Pauly ; Robert C. Moschel

Source :

RBID : pubmed:12093287

English descriptors

Abstract

Activity of the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) is an important source of tumor cell resistance to alkylating agents. AGT inhibitors may prove useful in enhancing chemotherapy. AGT is inactivated by reacting stoichiometrically with O(6)-benzylguanine (b(6)G), which is currently in clinical trials for this purpose. Short oligodeoxyribonucleotides containing a central b(6)G are more potent inactivators of AGT than b(6)G. We examined whether human AGT could react with oligodeoxyribonucleotides containing multiple b(6)G residues. The single-stranded 7-mer 5'-d[T(b(6)G)(5)G]-3' was an excellent AGT substrate with all five b(6)G adducts repaired although one adduct was repaired much more slowly. The highly b(6)G-resistant Y158H and P140K AGT mutants were also inactivated by 5'-d[T(b(6)G)(5)G]-3'. Studies with 7-mers containing a single b(6)G adduct showed that 5'-d[TGGGG(b(6)G)G]-3' was more poorly repaired by wild-type AGT than 5'-d[T(b(6)G)GGGGG]-3' and 5'-d[TGG(b(6)G)GGG]-3' and was even less repairable by mutants Y158H and P140K. This positional effect was unaffected by interchanging the terminal 5'- or 3'-nucleotides and was also observed with single-stranded 16-mer oligodeoxyribonucleotides containing O(6)-methylguanine, where a minimum of four nucleotides 3' to the lesion was required for the most efficient repair. Annealing with the reverse complementary strands to produce double-stranded substrates increased the ability of AGT to repair adducts at all positions except at positions 2 and 15. Our results suggest that AGT recognizes the polarity of single-stranded DNA, with the best substrates having an adduct adjacent to the 5'-terminal residue. These findings will aid in designing novel AGT inhibitors that incorporate O(6)-alkylguanine adducts in oligodeoxyribonucleotide contexts.

DOI: 10.1021/bi025857i
PubMed: 12093287

Links to Exploration step

pubmed:12093287

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Repair of oligodeoxyribonucleotides by O(6)-alkylguanine-DNA alkyltransferase.</title>
<author>
<name sortKey="Luu, Kieu X" sort="Luu, Kieu X" uniqKey="Luu K" first="Kieu X" last="Luu">Kieu X. Luu</name>
<affiliation>
<nlm:affiliation>Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, Pennsylvania 17033-0850, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kanugula, Sreenivas" sort="Kanugula, Sreenivas" uniqKey="Kanugula S" first="Sreenivas" last="Kanugula">Sreenivas Kanugula</name>
</author>
<author>
<name sortKey="Pegg, Anthony E" sort="Pegg, Anthony E" uniqKey="Pegg A" first="Anthony E" last="Pegg">Anthony E. Pegg</name>
</author>
<author>
<name sortKey="Pauly, Gary T" sort="Pauly, Gary T" uniqKey="Pauly G" first="Gary T" last="Pauly">Gary T. Pauly</name>
</author>
<author>
<name sortKey="Moschel, Robert C" sort="Moschel, Robert C" uniqKey="Moschel R" first="Robert C" last="Moschel">Robert C. Moschel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12093287</idno>
<idno type="pmid">12093287</idno>
<idno type="doi">10.1021/bi025857i</idno>
<idno type="wicri:Area/PubMed/Corpus">002502</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002502</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Repair of oligodeoxyribonucleotides by O(6)-alkylguanine-DNA alkyltransferase.</title>
<author>
<name sortKey="Luu, Kieu X" sort="Luu, Kieu X" uniqKey="Luu K" first="Kieu X" last="Luu">Kieu X. Luu</name>
<affiliation>
<nlm:affiliation>Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, Pennsylvania 17033-0850, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kanugula, Sreenivas" sort="Kanugula, Sreenivas" uniqKey="Kanugula S" first="Sreenivas" last="Kanugula">Sreenivas Kanugula</name>
</author>
<author>
<name sortKey="Pegg, Anthony E" sort="Pegg, Anthony E" uniqKey="Pegg A" first="Anthony E" last="Pegg">Anthony E. Pegg</name>
</author>
<author>
<name sortKey="Pauly, Gary T" sort="Pauly, Gary T" uniqKey="Pauly G" first="Gary T" last="Pauly">Gary T. Pauly</name>
</author>
<author>
<name sortKey="Moschel, Robert C" sort="Moschel, Robert C" uniqKey="Moschel R" first="Robert C" last="Moschel">Robert C. Moschel</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkaline Phosphatase (metabolism)</term>
<term>Amino Acid Substitution</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Crotalus</term>
<term>DNA Repair</term>
<term>Escherichia coli (enzymology)</term>
<term>Kinetics</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Mutagenesis, Site-Directed</term>
<term>O(6)-Methylguanine-DNA Methyltransferase (metabolism)</term>
<term>Oligodeoxyribonucleotides (metabolism)</term>
<term>Phosphodiesterase I</term>
<term>Phosphoric Diester Hydrolases</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkaline Phosphatase</term>
<term>O(6)-Methylguanine-DNA Methyltransferase</term>
<term>Oligodeoxyribonucleotides</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Crotalus</term>
<term>DNA Repair</term>
<term>Kinetics</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Mutagenesis, Site-Directed</term>
<term>Phosphodiesterase I</term>
<term>Phosphoric Diester Hydrolases</term>
<term>Substrate Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Activity of the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) is an important source of tumor cell resistance to alkylating agents. AGT inhibitors may prove useful in enhancing chemotherapy. AGT is inactivated by reacting stoichiometrically with O(6)-benzylguanine (b(6)G), which is currently in clinical trials for this purpose. Short oligodeoxyribonucleotides containing a central b(6)G are more potent inactivators of AGT than b(6)G. We examined whether human AGT could react with oligodeoxyribonucleotides containing multiple b(6)G residues. The single-stranded 7-mer 5'-d[T(b(6)G)(5)G]-3' was an excellent AGT substrate with all five b(6)G adducts repaired although one adduct was repaired much more slowly. The highly b(6)G-resistant Y158H and P140K AGT mutants were also inactivated by 5'-d[T(b(6)G)(5)G]-3'. Studies with 7-mers containing a single b(6)G adduct showed that 5'-d[TGGGG(b(6)G)G]-3' was more poorly repaired by wild-type AGT than 5'-d[T(b(6)G)GGGGG]-3' and 5'-d[TGG(b(6)G)GGG]-3' and was even less repairable by mutants Y158H and P140K. This positional effect was unaffected by interchanging the terminal 5'- or 3'-nucleotides and was also observed with single-stranded 16-mer oligodeoxyribonucleotides containing O(6)-methylguanine, where a minimum of four nucleotides 3' to the lesion was required for the most efficient repair. Annealing with the reverse complementary strands to produce double-stranded substrates increased the ability of AGT to repair adducts at all positions except at positions 2 and 15. Our results suggest that AGT recognizes the polarity of single-stranded DNA, with the best substrates having an adduct adjacent to the 5'-terminal residue. These findings will aid in designing novel AGT inhibitors that incorporate O(6)-alkylguanine adducts in oligodeoxyribonucleotide contexts.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12093287</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>08</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>41</Volume>
<Issue>27</Issue>
<PubDate>
<Year>2002</Year>
<Month>Jul</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Repair of oligodeoxyribonucleotides by O(6)-alkylguanine-DNA alkyltransferase.</ArticleTitle>
<Pagination>
<MedlinePgn>8689-97</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Activity of the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) is an important source of tumor cell resistance to alkylating agents. AGT inhibitors may prove useful in enhancing chemotherapy. AGT is inactivated by reacting stoichiometrically with O(6)-benzylguanine (b(6)G), which is currently in clinical trials for this purpose. Short oligodeoxyribonucleotides containing a central b(6)G are more potent inactivators of AGT than b(6)G. We examined whether human AGT could react with oligodeoxyribonucleotides containing multiple b(6)G residues. The single-stranded 7-mer 5'-d[T(b(6)G)(5)G]-3' was an excellent AGT substrate with all five b(6)G adducts repaired although one adduct was repaired much more slowly. The highly b(6)G-resistant Y158H and P140K AGT mutants were also inactivated by 5'-d[T(b(6)G)(5)G]-3'. Studies with 7-mers containing a single b(6)G adduct showed that 5'-d[TGGGG(b(6)G)G]-3' was more poorly repaired by wild-type AGT than 5'-d[T(b(6)G)GGGGG]-3' and 5'-d[TGG(b(6)G)GGG]-3' and was even less repairable by mutants Y158H and P140K. This positional effect was unaffected by interchanging the terminal 5'- or 3'-nucleotides and was also observed with single-stranded 16-mer oligodeoxyribonucleotides containing O(6)-methylguanine, where a minimum of four nucleotides 3' to the lesion was required for the most efficient repair. Annealing with the reverse complementary strands to produce double-stranded substrates increased the ability of AGT to repair adducts at all positions except at positions 2 and 15. Our results suggest that AGT recognizes the polarity of single-stranded DNA, with the best substrates having an adduct adjacent to the 5'-terminal residue. These findings will aid in designing novel AGT inhibitors that incorporate O(6)-alkylguanine adducts in oligodeoxyribonucleotide contexts.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Luu</LastName>
<ForeName>Kieu X</ForeName>
<Initials>KX</Initials>
<AffiliationInfo>
<Affiliation>Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, Pennsylvania 17033-0850, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kanugula</LastName>
<ForeName>Sreenivas</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pegg</LastName>
<ForeName>Anthony E</ForeName>
<Initials>AE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pauly</LastName>
<ForeName>Gary T</ForeName>
<Initials>GT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Moschel</LastName>
<ForeName>Robert C</ForeName>
<Initials>RC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA-18137</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA-71976</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009838">Oligodeoxyribonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.63</RegistryNumber>
<NameOfSubstance UI="D019853">O(6)-Methylguanine-DNA Methyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.1</RegistryNumber>
<NameOfSubstance UI="D000469">Alkaline Phosphatase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.4.-</RegistryNumber>
<NameOfSubstance UI="D010727">Phosphoric Diester Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.4.1</RegistryNumber>
<NameOfSubstance UI="D043264">Phosphodiesterase I</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000469" MajorTopicYN="N">Alkaline Phosphatase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017839" MajorTopicYN="N">Crotalus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004260" MajorTopicYN="Y">DNA Repair</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019853" MajorTopicYN="N">O(6)-Methylguanine-DNA Methyltransferase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009838" MajorTopicYN="N">Oligodeoxyribonucleotides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043264" MajorTopicYN="N">Phosphodiesterase I</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010727" MajorTopicYN="N">Phosphoric Diester Hydrolases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12093287</ArticleId>
<ArticleId IdType="pii">bi025857i</ArticleId>
<ArticleId IdType="doi">10.1021/bi025857i</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002502 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002502 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:12093287
   |texte=   Repair of oligodeoxyribonucleotides by O(6)-alkylguanine-DNA alkyltransferase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:12093287" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021