Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Recovery of known T-cell epitopes by computational scanning of a viral genome.

Identifieur interne : 002485 ( PubMed/Corpus ); précédent : 002484; suivant : 002486

Recovery of known T-cell epitopes by computational scanning of a viral genome.

Auteurs : Antoine Logean ; Didier Rognan

Source :

RBID : pubmed:12400854

English descriptors

Abstract

A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.

DOI: 10.1023/a:1020244329512
PubMed: 12400854

Links to Exploration step

pubmed:12400854

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Recovery of known T-cell epitopes by computational scanning of a viral genome.</title>
<author>
<name sortKey="Logean, Antoine" sort="Logean, Antoine" uniqKey="Logean A" first="Antoine" last="Logean">Antoine Logean</name>
<affiliation>
<nlm:affiliation>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, Illkirch, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rognan, Didier" sort="Rognan, Didier" uniqKey="Rognan D" first="Didier" last="Rognan">Didier Rognan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12400854</idno>
<idno type="pmid">12400854</idno>
<idno type="doi">10.1023/a:1020244329512</idno>
<idno type="wicri:Area/PubMed/Corpus">002485</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002485</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Recovery of known T-cell epitopes by computational scanning of a viral genome.</title>
<author>
<name sortKey="Logean, Antoine" sort="Logean, Antoine" uniqKey="Logean A" first="Antoine" last="Logean">Antoine Logean</name>
<affiliation>
<nlm:affiliation>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, Illkirch, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rognan, Didier" sort="Rognan, Didier" uniqKey="Rognan D" first="Didier" last="Rognan">Didier Rognan</name>
</author>
</analytic>
<series>
<title level="j">Journal of computer-aided molecular design</title>
<idno type="ISSN">0920-654X</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles</term>
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Databases, Genetic</term>
<term>Epitope Mapping (statistics & numerical data)</term>
<term>Genome, Viral</term>
<term>HLA-A Antigens (genetics)</term>
<term>HLA-A Antigens (metabolism)</term>
<term>HLA-A2 Antigen</term>
<term>HLA-B Antigens (genetics)</term>
<term>HLA-B Antigens (metabolism)</term>
<term>HLA-B27 Antigen</term>
<term>Hepatitis B Antigens (genetics)</term>
<term>Hepatitis B virus (genetics)</term>
<term>Hepatitis B virus (immunology)</term>
<term>Humans</term>
<term>Immunodominant Epitopes (genetics)</term>
<term>In Vitro Techniques</term>
<term>Protein Binding</term>
<term>Software</term>
<term>T-Lymphocytes (immunology)</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>HLA-A Antigens</term>
<term>HLA-B Antigens</term>
<term>Hepatitis B Antigens</term>
<term>Immunodominant Epitopes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>HLA-A Antigens</term>
<term>HLA-B Antigens</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Hepatitis B virus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Hepatitis B virus</term>
<term>T-Lymphocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Epitope Mapping</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Databases, Genetic</term>
<term>Genome, Viral</term>
<term>HLA-A2 Antigen</term>
<term>HLA-B27 Antigen</term>
<term>Humans</term>
<term>In Vitro Techniques</term>
<term>Protein Binding</term>
<term>Software</term>
<term>Thermodynamics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12400854</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>04</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0920-654X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>16</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2002</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Journal of computer-aided molecular design</Title>
<ISOAbbreviation>J. Comput. Aided Mol. Des.</ISOAbbreviation>
</Journal>
<ArticleTitle>Recovery of known T-cell epitopes by computational scanning of a viral genome.</ArticleTitle>
<Pagination>
<MedlinePgn>229-43</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Logean</LastName>
<ForeName>Antoine</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Bioinformatic Group, Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS 7081, Illkirch, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rognan</LastName>
<ForeName>Didier</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Comput Aided Mol Des</MedlineTA>
<NlmUniqueID>8710425</NlmUniqueID>
<ISSNLinking>0920-654X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015234">HLA-A Antigens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C435939">HLA-A*02:01 antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015789">HLA-A2 Antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015235">HLA-B Antigens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C464936">HLA-B*27:05 antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015796">HLA-B27 Antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006511">Hepatitis B Antigens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016056">Immunodominant Epitopes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018604" MajorTopicYN="N">Epitope Mapping</DescriptorName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="Y">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015234" MajorTopicYN="N">HLA-A Antigens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015789" MajorTopicYN="N">HLA-A2 Antigen</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015235" MajorTopicYN="N">HLA-B Antigens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015796" MajorTopicYN="N">HLA-B27 Antigen</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006511" MajorTopicYN="N">Hepatitis B Antigens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006515" MajorTopicYN="N">Hepatitis B virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016056" MajorTopicYN="N">Immunodominant Epitopes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="N">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013601" MajorTopicYN="N">T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12400854</ArticleId>
<ArticleId IdType="doi">10.1023/a:1020244329512</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Immunol. 1994 Aug;31(11):813-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8047072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Nov 26;360(6402):364-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1448153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Feb 20;279(5354):1166-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9469799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Pept Protein Res. 1996 Jan-Feb;47(1-2):91-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8907504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Sep 18;70(6):1035-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1525820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1991;11(4):281-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1758883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1998 Jul 15;161(2):617-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9670935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Sep 26;353(6342):326-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1922338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunogenetics. 2001 Mar;53(2):87-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11345595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8053-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8367462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunogenetics. 1999 Nov;50(3-4):213-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10602881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Sep 9;78(5):761-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8087844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2001 Nov 1;257(1-2):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11687234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2000 Sep;9(9):1838-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11045629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Mar 5;286(4):1251-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10047495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Sep 1;275(35):27055-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10823832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Immunol. 1995 May;43(1):13-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7558924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 1999 Nov 4;42(22):4650-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10579827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunol. 1998 Mar;10(3):259-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pept Sci. 1998 May;4(3):182-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9643627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2001 Feb;13(1):11-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Immunol. 1997 Nov;58(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9438204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>In Silico Biol. 1999;1(2):109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11471244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1994 Apr 15;152(8):3913-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8144960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1994 Dec 15;153(12):5586-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7527444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1997 Jan 20;185(2):367-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9016886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Sep 27;33(38):11476-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7522551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 1998;16:323-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9597133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2001 Mar 12;11(5):675-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1994 Jan 1;152(1):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8254189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 1996 Aug;26(8):1911-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8765039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2001 Oct 25;44(22):3572-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11606121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1996 Nov 14;384(6605):134-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8906788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 1997;43(4):281-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9316393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1995;64:463-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7574490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 2002 Apr;15(4):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11983929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2479-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7708669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 1995 Sep 25;185(2):181-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7561128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Aug 6;261(5122):769-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8342042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1996 May 1;156(9):3308-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Nov 19;75(4):693-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7694806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Apr 18;267(5):1258-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Sep 10;74(5):929-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8104103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 May 23;351(6324):290-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1709722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 1999 Sep;42(9):1975-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10513815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2001 Sep 1;255(1-2):57-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11470286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2000 Apr 3;237(1-2):105-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 1995 Apr;13(6):581-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7483779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 1999 Apr;11(2):209-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1998 Aug;16(8):753-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9702774</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002485 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002485 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:12400854
   |texte=   Recovery of known T-cell epitopes by computational scanning of a viral genome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:12400854" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021