Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Autoregulation in the biosynthesis of ribosomes.

Identifieur interne : 002475 ( PubMed/Corpus ); précédent : 002474; suivant : 002476

Autoregulation in the biosynthesis of ribosomes.

Auteurs : Yu Zhao ; Jung-Hoon Sohn ; Jonathan R. Warner

Source :

RBID : pubmed:12509467

English descriptors

Abstract

The synthesis of ribosomes in Saccharomyces cerevisiae consumes a prodigious amount of the cell's resources and, consequently, is tightly regulated. The rate of ribosome synthesis responds not only to nutritional cues but also to signals dependent on other macromolecular pathways of the cell, e.g., a defect in the secretory pathway leads to severe repression of transcription of both rRNA and ribosomal protein genes. A search for mutants that interrupted this repression revealed, surprisingly, that inactivation of RPL1B, one of a pair of genes encoding the 60S ribosomal protein L1, almost completely blocked the repression of rRNA and ribosomal protein gene transcription that usually follows a defect in the secretory pathway. Further experiments showed that almost any mutation leading to a defect in 60S subunit synthesis had the same effect, whereas mutations affecting 40S subunit synthesis did not. Although one might suspect that this effect would be due to a decrease in the initiation of translation or to the presence of half-mers, i.e., polyribosomes awaiting a 60S subunit, our data show that this is not the case. Rather, a variety of experiments suggest that some aspect of the production of defective 60S particles or, more likely, their breakdown suppresses the signal generated by a defect in the secretory pathway that represses ribosome synthesis.

DOI: 10.1128/mcb.23.2.699-707.2003
PubMed: 12509467

Links to Exploration step

pubmed:12509467

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Autoregulation in the biosynthesis of ribosomes.</title>
<author>
<name sortKey="Zhao, Yu" sort="Zhao, Yu" uniqKey="Zhao Y" first="Yu" last="Zhao">Yu Zhao</name>
<affiliation>
<nlm:affiliation>Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sohn, Jung Hoon" sort="Sohn, Jung Hoon" uniqKey="Sohn J" first="Jung-Hoon" last="Sohn">Jung-Hoon Sohn</name>
</author>
<author>
<name sortKey="Warner, Jonathan R" sort="Warner, Jonathan R" uniqKey="Warner J" first="Jonathan R" last="Warner">Jonathan R. Warner</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:12509467</idno>
<idno type="pmid">12509467</idno>
<idno type="doi">10.1128/mcb.23.2.699-707.2003</idno>
<idno type="wicri:Area/PubMed/Corpus">002475</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002475</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Autoregulation in the biosynthesis of ribosomes.</title>
<author>
<name sortKey="Zhao, Yu" sort="Zhao, Yu" uniqKey="Zhao Y" first="Yu" last="Zhao">Yu Zhao</name>
<affiliation>
<nlm:affiliation>Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sohn, Jung Hoon" sort="Sohn, Jung Hoon" uniqKey="Sohn J" first="Jung-Hoon" last="Sohn">Jung-Hoon Sohn</name>
</author>
<author>
<name sortKey="Warner, Jonathan R" sort="Warner, Jonathan R" uniqKey="Warner J" first="Jonathan R" last="Warner">Jonathan R. Warner</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="ISSN">0270-7306</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blotting, Northern</term>
<term>Cytoplasm (metabolism)</term>
<term>DNA Primers (metabolism)</term>
<term>Gene Deletion</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Models, Genetic</term>
<term>Mutation</term>
<term>Phenotype</term>
<term>Plasmids (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Biosynthesis</term>
<term>RNA (metabolism)</term>
<term>RNA, Messenger (metabolism)</term>
<term>RNA, Ribosomal (metabolism)</term>
<term>Ribosomal Proteins (metabolism)</term>
<term>Ribosomes (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Temperature</term>
<term>Time Factors</term>
<term>Transcription, Genetic</term>
<term>Tunicamycin (pharmacology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA Primers</term>
<term>RNA</term>
<term>RNA, Messenger</term>
<term>RNA, Ribosomal</term>
<term>Ribosomal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasm</term>
<term>Plasmids</term>
<term>Ribosomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Tunicamycin</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Northern</term>
<term>Gene Deletion</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Models, Genetic</term>
<term>Mutation</term>
<term>Phenotype</term>
<term>Protein Binding</term>
<term>Protein Biosynthesis</term>
<term>Temperature</term>
<term>Time Factors</term>
<term>Transcription, Genetic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The synthesis of ribosomes in Saccharomyces cerevisiae consumes a prodigious amount of the cell's resources and, consequently, is tightly regulated. The rate of ribosome synthesis responds not only to nutritional cues but also to signals dependent on other macromolecular pathways of the cell, e.g., a defect in the secretory pathway leads to severe repression of transcription of both rRNA and ribosomal protein genes. A search for mutants that interrupted this repression revealed, surprisingly, that inactivation of RPL1B, one of a pair of genes encoding the 60S ribosomal protein L1, almost completely blocked the repression of rRNA and ribosomal protein gene transcription that usually follows a defect in the secretory pathway. Further experiments showed that almost any mutation leading to a defect in 60S subunit synthesis had the same effect, whereas mutations affecting 40S subunit synthesis did not. Although one might suspect that this effect would be due to a decrease in the initiation of translation or to the presence of half-mers, i.e., polyribosomes awaiting a 60S subunit, our data show that this is not the case. Rather, a variety of experiments suggest that some aspect of the production of defective 60S particles or, more likely, their breakdown suppresses the signal generated by a defect in the secretory pathway that represses ribosome synthesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12509467</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>02</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0270-7306</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>23</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2003</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol. Cell. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Autoregulation in the biosynthesis of ribosomes.</ArticleTitle>
<Pagination>
<MedlinePgn>699-707</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The synthesis of ribosomes in Saccharomyces cerevisiae consumes a prodigious amount of the cell's resources and, consequently, is tightly regulated. The rate of ribosome synthesis responds not only to nutritional cues but also to signals dependent on other macromolecular pathways of the cell, e.g., a defect in the secretory pathway leads to severe repression of transcription of both rRNA and ribosomal protein genes. A search for mutants that interrupted this repression revealed, surprisingly, that inactivation of RPL1B, one of a pair of genes encoding the 60S ribosomal protein L1, almost completely blocked the repression of rRNA and ribosomal protein gene transcription that usually follows a defect in the secretory pathway. Further experiments showed that almost any mutation leading to a defect in 60S subunit synthesis had the same effect, whereas mutations affecting 40S subunit synthesis did not. Although one might suspect that this effect would be due to a decrease in the initiation of translation or to the presence of half-mers, i.e., polyribosomes awaiting a 60S subunit, our data show that this is not the case. Rather, a variety of experiments suggest that some aspect of the production of defective 60S particles or, more likely, their breakdown suppresses the signal generated by a defect in the secretory pathway that represses ribosome synthesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sohn</LastName>
<ForeName>Jung-Hoon</ForeName>
<Initials>JH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Warner</LastName>
<ForeName>Jonathan R</ForeName>
<Initials>JR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 CA013330</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM025532</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA13330</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM25532</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012335">RNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012269">Ribosomal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11089-65-9</RegistryNumber>
<NameOfSubstance UI="D014415">Tunicamycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63231-63-0</RegistryNumber>
<NameOfSubstance UI="D012313">RNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015152" MajorTopicYN="N">Blotting, Northern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012313" MajorTopicYN="N">RNA</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012335" MajorTopicYN="N">RNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012269" MajorTopicYN="N">Ribosomal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012270" MajorTopicYN="N">Ribosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014415" MajorTopicYN="N">Tunicamycin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12509467</ArticleId>
<ArticleId IdType="pmc">PMC151547</ArticleId>
<ArticleId IdType="doi">10.1128/mcb.23.2.699-707.2003</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 1994 Jan;8(2):211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8299940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Aug 15;13(16):2118-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10465789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Jul 1;13(13):3127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8039505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Dec 23;269(51):32286-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7798228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):7897-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2000 Feb 22;244(1-2):109-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10689193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Jun;20(11):3843-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Nov;11(11):3777-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11071906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 27;151(5):1057-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Mar;21(5):1453-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11238882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Sep;8(3):505-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11583614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Sep;8(3):517-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11583615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Dec;8(6):1363-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Feb 22;108(4):545-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11909525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18334-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11893754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Jul;10(1):105-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1969 Feb;62(2):468-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5256225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1973 Feb 25;248(4):1412-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4568815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1988 Feb;2(2):160-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3282992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Feb 24;56(4):619-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2645056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 May;122(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 May 31;65(5):797-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2040015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Jun 18;73(6):1197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8513503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Jan;14(1):822-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8264649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Jun;15(6):3187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7760815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1995 Jul 1;9(13):1559-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7628692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Sep;15(9):5071-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7651424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Aug 15;16(16):4924-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13804-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9391108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Nov 25;95(5):717-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9845373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Feb;19(2):1416-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9891075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Mar;19(3):2389-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10022925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 7;274(19):13235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10224082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Aug;19(8):5393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10409730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Apr;14(4):2493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8139552</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002475 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002475 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:12509467
   |texte=   Autoregulation in the biosynthesis of ribosomes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:12509467" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021