Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Degenerate in vitro genetic selection reveals mutations that diminish alfalfa mosaic virus RNA replication without affecting coat protein binding.

Identifieur interne : 002383 ( PubMed/Corpus ); précédent : 002382; suivant : 002384

Degenerate in vitro genetic selection reveals mutations that diminish alfalfa mosaic virus RNA replication without affecting coat protein binding.

Auteurs : Gail Rocheleau ; Jessica Petrillo ; Laura Guogas ; Lee Gehrke

Source :

RBID : pubmed:15254175

English descriptors

Abstract

The alfalfa mosaic virus (AMV) RNAs are infectious only in the presence of the viral coat protein; however, the mechanisms describing coat protein's role during replication are disputed. We reasoned that mechanistic details might be revealed by identifying RNA mutations in the 3'-terminal coat protein binding domain that increased or decreased RNA replication without affecting coat protein binding. Degenerate (doped) in vitro genetic selection, based on a pool of randomized 39-mers, was used to select 30 variant RNAs that bound coat protein with high affinity. AUGC sequences that are conserved among AMV and ilarvirus RNAs were among the invariant nucleotides in the selected RNAs. Five representative clones were analyzed in functional assays, revealing diminished viral RNA expression resulting from apparent defects in replication and/or translation. These data identify a set of mutations, including G-U wobble pairs and nucleotide mismatches in the 5' hairpin, which affect viral RNA functions without significant impact on coat protein binding. Because the mutations associated with diminished function were scattered over the 3'-terminal nucleotides, we considered the possibility that RNA conformational changes rather than disruption of a precise motif might limit activity. Native polyacrylamide gel electrophoresis experiments showed that the 3' RNA conformation was indeed altered by nucleotide substitutions. One interpretation of the data is that coat protein binding to the AUGC sequences determines the orientation of the 3' hairpins relative to one another, while local structural features within these hairpins are also critical determinants of functional activity.

DOI: 10.1128/JVI.78.15.8036-8046.2004
PubMed: 15254175

Links to Exploration step

pubmed:15254175

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Degenerate in vitro genetic selection reveals mutations that diminish alfalfa mosaic virus RNA replication without affecting coat protein binding.</title>
<author>
<name sortKey="Rocheleau, Gail" sort="Rocheleau, Gail" uniqKey="Rocheleau G" first="Gail" last="Rocheleau">Gail Rocheleau</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petrillo, Jessica" sort="Petrillo, Jessica" uniqKey="Petrillo J" first="Jessica" last="Petrillo">Jessica Petrillo</name>
</author>
<author>
<name sortKey="Guogas, Laura" sort="Guogas, Laura" uniqKey="Guogas L" first="Laura" last="Guogas">Laura Guogas</name>
</author>
<author>
<name sortKey="Gehrke, Lee" sort="Gehrke, Lee" uniqKey="Gehrke L" first="Lee" last="Gehrke">Lee Gehrke</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15254175</idno>
<idno type="pmid">15254175</idno>
<idno type="doi">10.1128/JVI.78.15.8036-8046.2004</idno>
<idno type="wicri:Area/PubMed/Corpus">002383</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002383</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Degenerate in vitro genetic selection reveals mutations that diminish alfalfa mosaic virus RNA replication without affecting coat protein binding.</title>
<author>
<name sortKey="Rocheleau, Gail" sort="Rocheleau, Gail" uniqKey="Rocheleau G" first="Gail" last="Rocheleau">Gail Rocheleau</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petrillo, Jessica" sort="Petrillo, Jessica" uniqKey="Petrillo J" first="Jessica" last="Petrillo">Jessica Petrillo</name>
</author>
<author>
<name sortKey="Guogas, Laura" sort="Guogas, Laura" uniqKey="Guogas L" first="Laura" last="Guogas">Laura Guogas</name>
</author>
<author>
<name sortKey="Gehrke, Lee" sort="Gehrke, Lee" uniqKey="Gehrke L" first="Lee" last="Gehrke">Lee Gehrke</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>3' Untranslated Regions (chemistry)</term>
<term>Alfalfa mosaic virus (genetics)</term>
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Capsid Proteins (metabolism)</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Nucleic Acid Conformation</term>
<term>Protein Binding</term>
<term>Protein Biosynthesis</term>
<term>RNA, Viral (biosynthesis)</term>
<term>RNA, Viral (chemistry)</term>
<term>RNA, Viral (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>3' Untranslated Regions</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Alfalfa mosaic virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Capsid Proteins</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Nucleic Acid Conformation</term>
<term>Protein Binding</term>
<term>Protein Biosynthesis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The alfalfa mosaic virus (AMV) RNAs are infectious only in the presence of the viral coat protein; however, the mechanisms describing coat protein's role during replication are disputed. We reasoned that mechanistic details might be revealed by identifying RNA mutations in the 3'-terminal coat protein binding domain that increased or decreased RNA replication without affecting coat protein binding. Degenerate (doped) in vitro genetic selection, based on a pool of randomized 39-mers, was used to select 30 variant RNAs that bound coat protein with high affinity. AUGC sequences that are conserved among AMV and ilarvirus RNAs were among the invariant nucleotides in the selected RNAs. Five representative clones were analyzed in functional assays, revealing diminished viral RNA expression resulting from apparent defects in replication and/or translation. These data identify a set of mutations, including G-U wobble pairs and nucleotide mismatches in the 5' hairpin, which affect viral RNA functions without significant impact on coat protein binding. Because the mutations associated with diminished function were scattered over the 3'-terminal nucleotides, we considered the possibility that RNA conformational changes rather than disruption of a precise motif might limit activity. Native polyacrylamide gel electrophoresis experiments showed that the 3' RNA conformation was indeed altered by nucleotide substitutions. One interpretation of the data is that coat protein binding to the AUGC sequences determines the orientation of the 3' hairpins relative to one another, while local structural features within these hairpins are also critical determinants of functional activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15254175</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>78</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2004</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Degenerate in vitro genetic selection reveals mutations that diminish alfalfa mosaic virus RNA replication without affecting coat protein binding.</ArticleTitle>
<Pagination>
<MedlinePgn>8036-46</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The alfalfa mosaic virus (AMV) RNAs are infectious only in the presence of the viral coat protein; however, the mechanisms describing coat protein's role during replication are disputed. We reasoned that mechanistic details might be revealed by identifying RNA mutations in the 3'-terminal coat protein binding domain that increased or decreased RNA replication without affecting coat protein binding. Degenerate (doped) in vitro genetic selection, based on a pool of randomized 39-mers, was used to select 30 variant RNAs that bound coat protein with high affinity. AUGC sequences that are conserved among AMV and ilarvirus RNAs were among the invariant nucleotides in the selected RNAs. Five representative clones were analyzed in functional assays, revealing diminished viral RNA expression resulting from apparent defects in replication and/or translation. These data identify a set of mutations, including G-U wobble pairs and nucleotide mismatches in the 5' hairpin, which affect viral RNA functions without significant impact on coat protein binding. Because the mutations associated with diminished function were scattered over the 3'-terminal nucleotides, we considered the possibility that RNA conformational changes rather than disruption of a precise motif might limit activity. Native polyacrylamide gel electrophoresis experiments showed that the 3' RNA conformation was indeed altered by nucleotide substitutions. One interpretation of the data is that coat protein binding to the AUGC sequences determines the orientation of the 3' hairpins relative to one another, while local structural features within these hairpins are also critical determinants of functional activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rocheleau</LastName>
<ForeName>Gail</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Petrillo</LastName>
<ForeName>Jessica</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guogas</LastName>
<ForeName>Laura</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gehrke</LastName>
<ForeName>Lee</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM042504</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM42504</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020413">3' Untranslated Regions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D036022">Capsid Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020413" MajorTopicYN="N">3' Untranslated Regions</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017794" MajorTopicYN="N">Alfalfa mosaic virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036022" MajorTopicYN="N">Capsid Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15254175</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.78.15.8036-8046.2004</ArticleId>
<ArticleId IdType="pii">78/15/8036</ArticleId>
<ArticleId IdType="pmc">PMC446135</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO Rep. 2000 Jul;1(1):18-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11256617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1999;144(5):843-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10416370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14286-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2003 Oct;148(10):2063-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14551826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 Jan;10(1):48-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1971 Oct;46(1):73-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5124242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1981 Apr 24;212(4493):403-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6163215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):347-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6320093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1986 Aug 28-Sep 3;322(6082):846-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3092107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1987 Mar 24;26(6):1563-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3297131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Nov 11;15(21):8783-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3684574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Aug 3;249(4968):505-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2200121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Aug 30;346(6287):818-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1697402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1991 Feb;5(2):201-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1899841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 May 24;252(5009):1167-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1709522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Nov 1;67(3):529-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1934059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Sep 25;21(19):4627-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8233801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Feb 1;13(3):727-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8313916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Apr;68(4):2194-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8139004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Apr 25;22(8):1346-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8190624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1995 Feb 25;23(4):654-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7899087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Nov 17;270(5239):1200-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7502045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Nov 10;213(2):650-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7491788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Jul 15;24(14):2660-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8758992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Sep 16;15(18):5077-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8890181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jan 24;275(5299):500-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9019810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Mar;71(3):2310-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9032367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Jun 13;89(6):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9200601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Nov;71(11):8385-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9343194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Mar 1;242(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 May 15;278(4):767-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9614941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Oct 1;17(19):5811-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9755181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1999 May;80 ( Pt 5):1089-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10355754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2001 Oct;58(11):1547-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706983</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002383 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002383 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15254175
   |texte=   Degenerate in vitro genetic selection reveals mutations that diminish alfalfa mosaic virus RNA replication without affecting coat protein binding.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:15254175" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021