Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The theoretical basis of universal identification systems for bacteria and viruses.

Identifieur interne : 002297 ( PubMed/Corpus ); précédent : 002296; suivant : 002298

The theoretical basis of universal identification systems for bacteria and viruses.

Auteurs : S. Chumakov ; C. Belapurkar ; C. Putonti ; T-B Li ; B M Pettitt ; G E Fox ; R C Willson ; Yu Fofanov

Source :

RBID : pubmed:20428334

Abstract

It is shown that the presence/absence pattern of 1000 random oligomers of length 12-13 in a bacterial genome is sufficiently characteristic to readily and unambiguously distinguish any known bacterial genome from any other. Even genomes of extremely closely-related organisms, such as strains of the same species, can be thus distinguished. One evident way to implement this approach in a practical assay is with hybridization arrays. It is envisioned that a single universal array can be readily designed that would allow identification of any bacterium that appears in a database of known patterns. We performed in silico experiments to test this idea. Calculations utilizing 105 publicly-available completely-sequenced microbial genomes allowed us to determine appropriate values of the test oligonucleotide length, n, and the number of probe sequences. Randomly chosen n-mers with a constant G + C content were used to form an in silico array and verify (a) how many n-mers from each genome would hybridize on this chip, and (b) how different the fingerprints of different genomes would be. With the appropriate choice of random oligomer length, the same approach can also be used to identify viral or eukaryotic genomes.

DOI: 10.4024/40501.jbpc.05.04
PubMed: 20428334

Links to Exploration step

pubmed:20428334

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The theoretical basis of universal identification systems for bacteria and viruses.</title>
<author>
<name sortKey="Chumakov, S" sort="Chumakov, S" uniqKey="Chumakov S" first="S" last="Chumakov">S. Chumakov</name>
<affiliation>
<nlm:affiliation>Department of Computer Science, University of Houston, Houston, TX 77204, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Belapurkar, C" sort="Belapurkar, C" uniqKey="Belapurkar C" first="C" last="Belapurkar">C. Belapurkar</name>
</author>
<author>
<name sortKey="Putonti, C" sort="Putonti, C" uniqKey="Putonti C" first="C" last="Putonti">C. Putonti</name>
</author>
<author>
<name sortKey="Li, T B" sort="Li, T B" uniqKey="Li T" first="T-B" last="Li">T-B Li</name>
</author>
<author>
<name sortKey="Pettitt, B M" sort="Pettitt, B M" uniqKey="Pettitt B" first="B M" last="Pettitt">B M Pettitt</name>
</author>
<author>
<name sortKey="Fox, G E" sort="Fox, G E" uniqKey="Fox G" first="G E" last="Fox">G E Fox</name>
</author>
<author>
<name sortKey="Willson, R C" sort="Willson, R C" uniqKey="Willson R" first="R C" last="Willson">R C Willson</name>
</author>
<author>
<name sortKey="Fofanov, Yu" sort="Fofanov, Yu" uniqKey="Fofanov Y" first="Yu" last="Fofanov">Yu Fofanov</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:20428334</idno>
<idno type="pmid">20428334</idno>
<idno type="doi">10.4024/40501.jbpc.05.04</idno>
<idno type="wicri:Area/PubMed/Corpus">002297</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002297</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The theoretical basis of universal identification systems for bacteria and viruses.</title>
<author>
<name sortKey="Chumakov, S" sort="Chumakov, S" uniqKey="Chumakov S" first="S" last="Chumakov">S. Chumakov</name>
<affiliation>
<nlm:affiliation>Department of Computer Science, University of Houston, Houston, TX 77204, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Belapurkar, C" sort="Belapurkar, C" uniqKey="Belapurkar C" first="C" last="Belapurkar">C. Belapurkar</name>
</author>
<author>
<name sortKey="Putonti, C" sort="Putonti, C" uniqKey="Putonti C" first="C" last="Putonti">C. Putonti</name>
</author>
<author>
<name sortKey="Li, T B" sort="Li, T B" uniqKey="Li T" first="T-B" last="Li">T-B Li</name>
</author>
<author>
<name sortKey="Pettitt, B M" sort="Pettitt, B M" uniqKey="Pettitt B" first="B M" last="Pettitt">B M Pettitt</name>
</author>
<author>
<name sortKey="Fox, G E" sort="Fox, G E" uniqKey="Fox G" first="G E" last="Fox">G E Fox</name>
</author>
<author>
<name sortKey="Willson, R C" sort="Willson, R C" uniqKey="Willson R" first="R C" last="Willson">R C Willson</name>
</author>
<author>
<name sortKey="Fofanov, Yu" sort="Fofanov, Yu" uniqKey="Fofanov Y" first="Yu" last="Fofanov">Yu Fofanov</name>
</author>
</analytic>
<series>
<title level="j">Journal of biological physics and chemistry : JBPC</title>
<idno type="ISSN">1512-0856</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is shown that the presence/absence pattern of 1000 random oligomers of length 12-13 in a bacterial genome is sufficiently characteristic to readily and unambiguously distinguish any known bacterial genome from any other. Even genomes of extremely closely-related organisms, such as strains of the same species, can be thus distinguished. One evident way to implement this approach in a practical assay is with hybridization arrays. It is envisioned that a single universal array can be readily designed that would allow identification of any bacterium that appears in a database of known patterns. We performed in silico experiments to test this idea. Calculations utilizing 105 publicly-available completely-sequenced microbial genomes allowed us to determine appropriate values of the test oligonucleotide length, n, and the number of probe sequences. Randomly chosen n-mers with a constant G + C content were used to form an in silico array and verify (a) how many n-mers from each genome would hybridize on this chip, and (b) how different the fingerprints of different genomes would be. With the appropriate choice of random oligomer length, the same approach can also be used to identify viral or eukaryotic genomes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">20428334</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1512-0856</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2005</Year>
<Month>Dec</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of biological physics and chemistry : JBPC</Title>
<ISOAbbreviation>J Biol Phys Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>The theoretical basis of universal identification systems for bacteria and viruses.</ArticleTitle>
<Pagination>
<MedlinePgn>121-128</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>It is shown that the presence/absence pattern of 1000 random oligomers of length 12-13 in a bacterial genome is sufficiently characteristic to readily and unambiguously distinguish any known bacterial genome from any other. Even genomes of extremely closely-related organisms, such as strains of the same species, can be thus distinguished. One evident way to implement this approach in a practical assay is with hybridization arrays. It is envisioned that a single universal array can be readily designed that would allow identification of any bacterium that appears in a database of known patterns. We performed in silico experiments to test this idea. Calculations utilizing 105 publicly-available completely-sequenced microbial genomes allowed us to determine appropriate values of the test oligonucleotide length, n, and the number of probe sequences. Randomly chosen n-mers with a constant G + C content were used to form an in silico array and verify (a) how many n-mers from each genome would hybridize on this chip, and (b) how different the fingerprints of different genomes would be. With the appropriate choice of random oligomer length, the same approach can also be used to identify viral or eukaryotic genomes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chumakov</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science, University of Houston, Houston, TX 77204, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Belapurkar</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Putonti</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>T-B</ForeName>
<Initials>TB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pettitt</LastName>
<ForeName>B M</ForeName>
<Initials>BM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fox</LastName>
<ForeName>G E</ForeName>
<Initials>GE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Willson</LastName>
<ForeName>R C</ForeName>
<Initials>RC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fofanov</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM066813</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM066813-02</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T15 LM007093</GrantID>
<Acronym>LM</Acronym>
<Agency>NLM NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>J Biol Phys Chem</MedlineTA>
<NlmUniqueID>101175583</NlmUniqueID>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20428334</ArticleId>
<ArticleId IdType="pmc">PMC2860426</ArticleId>
<ArticleId IdType="mid">NIHMS77485</ArticleId>
<ArticleId IdType="doi">10.4024/40501.jbpc.05.04</ArticleId>
</ArticleIdList>
<pmc-dir>nihms</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Syst Appl Microbiol. 2003 Jun;26(2):262-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12866853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 May;8(5):435-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9582189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Periodontol. 1991 Jul;18(6):396-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1890219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Aug;69(8):4942-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12902290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Nov;68(11):5452-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12406737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 15;31(2):779-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12527788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Dec;68(12):6361-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12450861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 22;32(5):1848-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Oct 12;20(15):2421-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15087315</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002297 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002297 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20428334
   |texte=   The theoretical basis of universal identification systems for bacteria and viruses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20428334" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021