Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A fast algorithm for the construction of universal footprinting templates in DNA.

Identifieur interne : 002294 ( PubMed/Corpus ); précédent : 002293; suivant : 002295

A fast algorithm for the construction of universal footprinting templates in DNA.

Auteurs : James W. Anderson ; Keith R. Fox ; Graham A. Niblo

Source :

RBID : pubmed:16328479

English descriptors

Abstract

We introduce and give a complete description of a new graph to be used for DNA sequencing questions. This graph has the advantage over the classical de Bruijn graph that it fully accounts for the double stranded nature of DNA, rather than dealing with single strands. Technically, our graph may be thought of as the quotient of the de Bruijn graph under the natural involution of sending a DNA strand to its complementary strand. However, this involution has fixed points, and this complicates the structure of the quotient graph which we have therefore modified herein. As an application and motivating example, we give an efficient algorithm for constructing universal footprinting templates for n-mers. This problem may be formulated as the task of finding a shortest possible segment of DNA which contains every possible sequence of base pairs of some fixed length n. Previous work by Kwan et al has attacked this problem from a numerical point of view and generated minimal length universal footprinting templates for n = 2, 3, 5, 7, together with unsubstantiated candidates for the case n = 4. We show that their candidates for n = 4 are indeed minimal length universal footprinting templates.

DOI: 10.1007/s00285-005-0357-z
PubMed: 16328479

Links to Exploration step

pubmed:16328479

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A fast algorithm for the construction of universal footprinting templates in DNA.</title>
<author>
<name sortKey="Anderson, James W" sort="Anderson, James W" uniqKey="Anderson J" first="James W" last="Anderson">James W. Anderson</name>
<affiliation>
<nlm:affiliation>School of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom. j.w.anderson@soton.ac.uk</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fox, Keith R" sort="Fox, Keith R" uniqKey="Fox K" first="Keith R" last="Fox">Keith R. Fox</name>
</author>
<author>
<name sortKey="Niblo, Graham A" sort="Niblo, Graham A" uniqKey="Niblo G" first="Graham A" last="Niblo">Graham A. Niblo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16328479</idno>
<idno type="pmid">16328479</idno>
<idno type="doi">10.1007/s00285-005-0357-z</idno>
<idno type="wicri:Area/PubMed/Corpus">002294</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002294</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A fast algorithm for the construction of universal footprinting templates in DNA.</title>
<author>
<name sortKey="Anderson, James W" sort="Anderson, James W" uniqKey="Anderson J" first="James W" last="Anderson">James W. Anderson</name>
<affiliation>
<nlm:affiliation>School of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom. j.w.anderson@soton.ac.uk</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fox, Keith R" sort="Fox, Keith R" uniqKey="Fox K" first="Keith R" last="Fox">Keith R. Fox</name>
</author>
<author>
<name sortKey="Niblo, Graham A" sort="Niblo, Graham A" uniqKey="Niblo G" first="Graham A" last="Niblo">Graham A. Niblo</name>
</author>
</analytic>
<series>
<title level="j">Journal of mathematical biology</title>
<idno type="ISSN">0303-6812</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Base Pairing (genetics)</term>
<term>DNA (chemistry)</term>
<term>DNA (genetics)</term>
<term>DNA Footprinting (methods)</term>
<term>Oligodeoxyribonucleotides (chemistry)</term>
<term>Oligodeoxyribonucleotides (genetics)</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA</term>
<term>Oligodeoxyribonucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Base Pairing</term>
<term>DNA</term>
<term>Oligodeoxyribonucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>DNA Footprinting</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Sequence Analysis, DNA</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We introduce and give a complete description of a new graph to be used for DNA sequencing questions. This graph has the advantage over the classical de Bruijn graph that it fully accounts for the double stranded nature of DNA, rather than dealing with single strands. Technically, our graph may be thought of as the quotient of the de Bruijn graph under the natural involution of sending a DNA strand to its complementary strand. However, this involution has fixed points, and this complicates the structure of the quotient graph which we have therefore modified herein. As an application and motivating example, we give an efficient algorithm for constructing universal footprinting templates for n-mers. This problem may be formulated as the task of finding a shortest possible segment of DNA which contains every possible sequence of base pairs of some fixed length n. Previous work by Kwan et al has attacked this problem from a numerical point of view and generated minimal length universal footprinting templates for n = 2, 3, 5, 7, together with unsubstantiated candidates for the case n = 4. We show that their candidates for n = 4 are indeed minimal length universal footprinting templates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16328479</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>09</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0303-6812</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>52</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2006</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of mathematical biology</Title>
<ISOAbbreviation>J Math Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>A fast algorithm for the construction of universal footprinting templates in DNA.</ArticleTitle>
<Pagination>
<MedlinePgn>307-42</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We introduce and give a complete description of a new graph to be used for DNA sequencing questions. This graph has the advantage over the classical de Bruijn graph that it fully accounts for the double stranded nature of DNA, rather than dealing with single strands. Technically, our graph may be thought of as the quotient of the de Bruijn graph under the natural involution of sending a DNA strand to its complementary strand. However, this involution has fixed points, and this complicates the structure of the quotient graph which we have therefore modified herein. As an application and motivating example, we give an efficient algorithm for constructing universal footprinting templates for n-mers. This problem may be formulated as the task of finding a shortest possible segment of DNA which contains every possible sequence of base pairs of some fixed length n. Previous work by Kwan et al has attacked this problem from a numerical point of view and generated minimal length universal footprinting templates for n = 2, 3, 5, 7, together with unsubstantiated candidates for the case n = 4. We show that their candidates for n = 4 are indeed minimal length universal footprinting templates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Anderson</LastName>
<ForeName>James W</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>School of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom. j.w.anderson@soton.ac.uk</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fox</LastName>
<ForeName>Keith R</ForeName>
<Initials>KR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Niblo</LastName>
<ForeName>Graham A</ForeName>
<Initials>GA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>11</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Math Biol</MedlineTA>
<NlmUniqueID>7502105</NlmUniqueID>
<ISSNLinking>0303-6812</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009838">Oligodeoxyribonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="Y">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020029" MajorTopicYN="N">Base Pairing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018983" MajorTopicYN="N">DNA Footprinting</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009838" MajorTopicYN="N">Oligodeoxyribonucleotides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>01</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2005</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16328479</ArticleId>
<ArticleId IdType="doi">10.1007/s00285-005-0357-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 2001 Jun 15;293(2):246-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11399039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1978 Sep;5(9):3157-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">212715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2001;340:412-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11529207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Oct 15;31(20):e124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 1997 Aug;8(1):35-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9327396</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002294 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002294 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16328479
   |texte=   A fast algorithm for the construction of universal footprinting templates in DNA.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16328479" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021