Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails.

Identifieur interne : 002265 ( PubMed/Corpus ); précédent : 002264; suivant : 002266

Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails.

Auteurs : Nikolay Korolev ; Alexander P. Lyubartsev ; Lars Nordenskiöld

Source :

RBID : pubmed:16565063

English descriptors

Abstract

We conducted molecular dynamics computer simulations of charged histone tail-DNA interactions in systems mimicking nucleosome core particles (NCP) . In a coarse-grained model, the NCP is modeled as a negatively charged spherical particle with flexible polycationic histone tails attached to it in a dielectric continuum with explicit mobile counterions and added salt. The size, charge, and distribution of the tails relative to the core were built to mimick real NCP. In this way, we incorporate attractive ion-ion correlation effects due to fluctuations in the ion cloud and the attractive entropic and energetic tail-bridging effects. In agreement with experimental data, increase of monovalent salt content from salt-free to physiological concentration leads to the formation of NCP aggregates; likewise, in the presence of MgCl2, the NCPs form condensed systems via histone-tail bridging and accumulation of counterions. More detailed mechanisms of the histone tail-DNA interactions and dynamics have been obtained from all-atom molecular dynamics simulations (including water), comprising three DNA 22-mers and 14 short fragments of the H4 histone tail (amino acids 5-12) carrying three positive charges on lysine+ interacting with DNA. We found correlation of the DNA-DNA distance with the presence and association of the histone tail between the DNA molecules.

DOI: 10.1529/biophysj.105.080226
PubMed: 16565063

Links to Exploration step

pubmed:16565063

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails.</title>
<author>
<name sortKey="Korolev, Nikolay" sort="Korolev, Nikolay" uniqKey="Korolev N" first="Nikolay" last="Korolev">Nikolay Korolev</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lyubartsev, Alexander P" sort="Lyubartsev, Alexander P" uniqKey="Lyubartsev A" first="Alexander P" last="Lyubartsev">Alexander P. Lyubartsev</name>
</author>
<author>
<name sortKey="Nordenskiold, Lars" sort="Nordenskiold, Lars" uniqKey="Nordenskiold L" first="Lars" last="Nordenskiöld">Lars Nordenskiöld</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16565063</idno>
<idno type="pmid">16565063</idno>
<idno type="doi">10.1529/biophysj.105.080226</idno>
<idno type="wicri:Area/PubMed/Corpus">002265</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002265</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails.</title>
<author>
<name sortKey="Korolev, Nikolay" sort="Korolev, Nikolay" uniqKey="Korolev N" first="Nikolay" last="Korolev">Nikolay Korolev</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lyubartsev, Alexander P" sort="Lyubartsev, Alexander P" uniqKey="Lyubartsev A" first="Alexander P" last="Lyubartsev">Alexander P. Lyubartsev</name>
</author>
<author>
<name sortKey="Nordenskiold, Lars" sort="Nordenskiold, Lars" uniqKey="Nordenskiold L" first="Lars" last="Nordenskiöld">Lars Nordenskiöld</name>
</author>
</analytic>
<series>
<title level="j">Biophysical journal</title>
<idno type="ISSN">0006-3495</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Computer Simulation</term>
<term>DNA (chemistry)</term>
<term>HMGN Proteins (chemistry)</term>
<term>Histones (chemistry)</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Nucleic Acid Conformation</term>
<term>Nucleosomes (chemistry)</term>
<term>Protein Binding</term>
<term>Static Electricity</term>
<term>Stress, Mechanical</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA</term>
<term>HMGN Proteins</term>
<term>Histones</term>
<term>Nucleosomes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Computer Simulation</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Nucleic Acid Conformation</term>
<term>Protein Binding</term>
<term>Static Electricity</term>
<term>Stress, Mechanical</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We conducted molecular dynamics computer simulations of charged histone tail-DNA interactions in systems mimicking nucleosome core particles (NCP) . In a coarse-grained model, the NCP is modeled as a negatively charged spherical particle with flexible polycationic histone tails attached to it in a dielectric continuum with explicit mobile counterions and added salt. The size, charge, and distribution of the tails relative to the core were built to mimick real NCP. In this way, we incorporate attractive ion-ion correlation effects due to fluctuations in the ion cloud and the attractive entropic and energetic tail-bridging effects. In agreement with experimental data, increase of monovalent salt content from salt-free to physiological concentration leads to the formation of NCP aggregates; likewise, in the presence of MgCl2, the NCPs form condensed systems via histone-tail bridging and accumulation of counterions. More detailed mechanisms of the histone tail-DNA interactions and dynamics have been obtained from all-atom molecular dynamics simulations (including water), comprising three DNA 22-mers and 14 short fragments of the H4 histone tail (amino acids 5-12) carrying three positive charges on lysine+ interacting with DNA. We found correlation of the DNA-DNA distance with the presence and association of the histone tail between the DNA molecules.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16565063</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>07</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0006-3495</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>90</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2006</Year>
<Month>Jun</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Biophysical journal</Title>
<ISOAbbreviation>Biophys. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails.</ArticleTitle>
<Pagination>
<MedlinePgn>4305-16</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We conducted molecular dynamics computer simulations of charged histone tail-DNA interactions in systems mimicking nucleosome core particles (NCP) . In a coarse-grained model, the NCP is modeled as a negatively charged spherical particle with flexible polycationic histone tails attached to it in a dielectric continuum with explicit mobile counterions and added salt. The size, charge, and distribution of the tails relative to the core were built to mimick real NCP. In this way, we incorporate attractive ion-ion correlation effects due to fluctuations in the ion cloud and the attractive entropic and energetic tail-bridging effects. In agreement with experimental data, increase of monovalent salt content from salt-free to physiological concentration leads to the formation of NCP aggregates; likewise, in the presence of MgCl2, the NCPs form condensed systems via histone-tail bridging and accumulation of counterions. More detailed mechanisms of the histone tail-DNA interactions and dynamics have been obtained from all-atom molecular dynamics simulations (including water), comprising three DNA 22-mers and 14 short fragments of the H4 histone tail (amino acids 5-12) carrying three positive charges on lysine+ interacting with DNA. We found correlation of the DNA-DNA distance with the presence and association of the histone tail between the DNA molecules.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Korolev</LastName>
<ForeName>Nikolay</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lyubartsev</LastName>
<ForeName>Alexander P</ForeName>
<Initials>AP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nordenskiöld</LastName>
<ForeName>Lars</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>03</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biophys J</MedlineTA>
<NlmUniqueID>0370626</NlmUniqueID>
<ISSNLinking>0006-3495</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024001">HMGN Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006657">Histones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009707">Nucleosomes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Biophys J. 2006 Jul 15;91(2):777</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024001" MajorTopicYN="N">HMGN Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006657" MajorTopicYN="N">Histones</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="Y">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009707" MajorTopicYN="N">Nucleosomes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="N">Stress, Mechanical</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16565063</ArticleId>
<ArticleId IdType="pii">S0006-3495(06)72609-1</ArticleId>
<ArticleId IdType="doi">10.1529/biophysj.105.080226</ArticleId>
<ArticleId IdType="pmc">PMC1471847</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1997 Sep 18;389(6648):251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Oct 7;280(40):33701-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16033758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Mar 14;327(1):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12614610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2002 Jan;82(1 Pt 1):345-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1998 Apr;8(2):140-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9610403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Phys J E Soft Matter. 2005 Jan;16(1):17-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15688137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2001 Jan;58(1):106-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11072233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2002 Jul;83(1):566-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12080143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2001 Feb 7;9(2):105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11250195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Sep 13;297(5588):1824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Jun 25;264(18):10574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2732239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Oct 15;31(20):5971-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Biophys J. 2005 Dec;35(1):53-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2005 Apr;15(2):188-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15837178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1979 May 29;18(11):2192-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">444448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2001 Apr;11(2):130-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11250134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2001 Aug 15;123(32):7745-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11493048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 30;280(39):33552-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2002 Jun;82(6):2847-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12023209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8634-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12853566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Feb 20;211(4):883-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2313700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2002 Jun;82(6):2860-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12023210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jul 7;436(7047):138-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16001076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14771-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Feb 1;27(3):711-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9889264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2001 Aug;81(2):1127-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11463653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 May 5;261(13):5992-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3700380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Biophys J. 2004 Dec;33(8):671-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15146298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10548-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8855215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2004 Apr 5;73(5):542-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15048778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 1996 Jun;6(3):334-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8804837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 1994 Mar;34(3):337-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8161709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(14):4269-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1999 Aug 15;7(8):1009-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10467141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev B Condens Matter. 1985 Mar 1;31(5):2643-2648</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9936106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 May 18;308(5):907-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11352581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Apr;23(8):2778-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12665578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Jun 21;319(5):1097-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12079350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8180-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15919827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 22;37(51):17637-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9922128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2004 Dec 15;121(23):11942-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Colloid Interface Sci. 2005 Jun 30;114-115:173-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15936291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1998 May;74(5):2491-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9591675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 2002;31:361-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11988475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jan 7;295(1):29-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10623506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1035-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Nov 21;334(2):229-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Apr 27;43(16):4773-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2003 Dec;24(16):2063-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14531059</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002265 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002265 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16565063
   |texte=   Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16565063" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021