Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities.

Identifieur interne : 002222 ( PubMed/Corpus ); précédent : 002221; suivant : 002223

Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities.

Auteurs : Michael F. Berger ; Anthony A. Philippakis ; Aaron M. Qureshi ; Fangxue S. He ; Preston W. Estep ; Martha L. Bulyk

Source :

RBID : pubmed:16998473

English descriptors

Abstract

Transcription factors (TFs) interact with specific DNA regulatory sequences to control gene expression throughout myriad cellular processes. However, the DNA binding specificities of only a small fraction of TFs are sufficiently characterized to predict the sequences that they can and cannot bind. We present a maximally compact, synthetic DNA sequence design for protein binding microarray (PBM) experiments that represents all possible DNA sequence variants of a given length k (that is, all 'k-mers') on a single, universal microarray. We constructed such all k-mer microarrays covering all 10-base pair (bp) binding sites by converting high-density single-stranded oligonucleotide arrays to double-stranded (ds) DNA arrays. Using these microarrays we comprehensively determined the binding specificities over a full range of affinities for five TFs of different structural classes from yeast, worm, mouse and human. The unbiased coverage of all k-mers permits high-throughput interrogation of binding site preferences, including nucleotide interdependencies, at unprecedented resolution.

DOI: 10.1038/nbt1246
PubMed: 16998473

Links to Exploration step

pubmed:16998473

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities.</title>
<author>
<name sortKey="Berger, Michael F" sort="Berger, Michael F" uniqKey="Berger M" first="Michael F" last="Berger">Michael F. Berger</name>
<affiliation>
<nlm:affiliation>Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Philippakis, Anthony A" sort="Philippakis, Anthony A" uniqKey="Philippakis A" first="Anthony A" last="Philippakis">Anthony A. Philippakis</name>
</author>
<author>
<name sortKey="Qureshi, Aaron M" sort="Qureshi, Aaron M" uniqKey="Qureshi A" first="Aaron M" last="Qureshi">Aaron M. Qureshi</name>
</author>
<author>
<name sortKey="He, Fangxue S" sort="He, Fangxue S" uniqKey="He F" first="Fangxue S" last="He">Fangxue S. He</name>
</author>
<author>
<name sortKey="Estep, Preston W" sort="Estep, Preston W" uniqKey="Estep P" first="Preston W" last="Estep">Preston W. Estep</name>
</author>
<author>
<name sortKey="Bulyk, Martha L" sort="Bulyk, Martha L" uniqKey="Bulyk M" first="Martha L" last="Bulyk">Martha L. Bulyk</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16998473</idno>
<idno type="pmid">16998473</idno>
<idno type="doi">10.1038/nbt1246</idno>
<idno type="wicri:Area/PubMed/Corpus">002222</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002222</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities.</title>
<author>
<name sortKey="Berger, Michael F" sort="Berger, Michael F" uniqKey="Berger M" first="Michael F" last="Berger">Michael F. Berger</name>
<affiliation>
<nlm:affiliation>Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Philippakis, Anthony A" sort="Philippakis, Anthony A" uniqKey="Philippakis A" first="Anthony A" last="Philippakis">Anthony A. Philippakis</name>
</author>
<author>
<name sortKey="Qureshi, Aaron M" sort="Qureshi, Aaron M" uniqKey="Qureshi A" first="Aaron M" last="Qureshi">Aaron M. Qureshi</name>
</author>
<author>
<name sortKey="He, Fangxue S" sort="He, Fangxue S" uniqKey="He F" first="Fangxue S" last="He">Fangxue S. He</name>
</author>
<author>
<name sortKey="Estep, Preston W" sort="Estep, Preston W" uniqKey="Estep P" first="Preston W" last="Estep">Preston W. Estep</name>
</author>
<author>
<name sortKey="Bulyk, Martha L" sort="Bulyk, Martha L" uniqKey="Bulyk M" first="Martha L" last="Bulyk">Martha L. Bulyk</name>
</author>
</analytic>
<series>
<title level="j">Nature biotechnology</title>
<idno type="ISSN">1087-0156</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors (chemistry)</term>
<term>Binding Sites (physiology)</term>
<term>Caenorhabditis elegans</term>
<term>Caenorhabditis elegans Proteins (chemistry)</term>
<term>Early Growth Response Protein 1 (chemistry)</term>
<term>Homeodomain Proteins (chemistry)</term>
<term>Humans</term>
<term>Mice</term>
<term>Octamer Transcription Factor-1 (chemistry)</term>
<term>Oligonucleotide Array Sequence Analysis (methods)</term>
<term>Protein Binding</term>
<term>Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Telomere-Binding Proteins (chemistry)</term>
<term>Transcription Factors (chemistry)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</term>
<term>Caenorhabditis elegans Proteins</term>
<term>Early Growth Response Protein 1</term>
<term>Homeodomain Proteins</term>
<term>Octamer Transcription Factor-1</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Telomere-Binding Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Binding Sites</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Caenorhabditis elegans</term>
<term>Humans</term>
<term>Mice</term>
<term>Protein Binding</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transcription factors (TFs) interact with specific DNA regulatory sequences to control gene expression throughout myriad cellular processes. However, the DNA binding specificities of only a small fraction of TFs are sufficiently characterized to predict the sequences that they can and cannot bind. We present a maximally compact, synthetic DNA sequence design for protein binding microarray (PBM) experiments that represents all possible DNA sequence variants of a given length k (that is, all 'k-mers') on a single, universal microarray. We constructed such all k-mer microarrays covering all 10-base pair (bp) binding sites by converting high-density single-stranded oligonucleotide arrays to double-stranded (ds) DNA arrays. Using these microarrays we comprehensively determined the binding specificities over a full range of affinities for five TFs of different structural classes from yeast, worm, mouse and human. The unbiased coverage of all k-mers permits high-throughput interrogation of binding site preferences, including nucleotide interdependencies, at unprecedented resolution.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16998473</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>12</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1087-0156</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>24</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2006</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Nature biotechnology</Title>
<ISOAbbreviation>Nat. Biotechnol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities.</ArticleTitle>
<Pagination>
<MedlinePgn>1429-35</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Transcription factors (TFs) interact with specific DNA regulatory sequences to control gene expression throughout myriad cellular processes. However, the DNA binding specificities of only a small fraction of TFs are sufficiently characterized to predict the sequences that they can and cannot bind. We present a maximally compact, synthetic DNA sequence design for protein binding microarray (PBM) experiments that represents all possible DNA sequence variants of a given length k (that is, all 'k-mers') on a single, universal microarray. We constructed such all k-mer microarrays covering all 10-base pair (bp) binding sites by converting high-density single-stranded oligonucleotide arrays to double-stranded (ds) DNA arrays. Using these microarrays we comprehensively determined the binding specificities over a full range of affinities for five TFs of different structural classes from yeast, worm, mouse and human. The unbiased coverage of all k-mers permits high-throughput interrogation of binding site preferences, including nucleotide interdependencies, at unprecedented resolution.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Berger</LastName>
<ForeName>Michael F</ForeName>
<Initials>MF</Initials>
<AffiliationInfo>
<Affiliation>Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Philippakis</LastName>
<ForeName>Anthony A</ForeName>
<Initials>AA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Qureshi</LastName>
<ForeName>Aaron M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Fangxue S</ForeName>
<Initials>FS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Estep</LastName>
<ForeName>Preston W</ForeName>
<Initials>PW</Initials>
<Suffix>3rd</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Bulyk</LastName>
<ForeName>Martha L</ForeName>
<Initials>ML</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HG003420</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HG003985</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>09</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Nat Biotechnol</MedlineTA>
<NlmUniqueID>9604648</NlmUniqueID>
<ISSNLinking>1087-0156</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051778">Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C064042">CBF1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C109217">CEH-22 protein, C elegans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029742">Caenorhabditis elegans Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051766">Early Growth Response Protein 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C486109">Egr1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018398">Homeodomain Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050811">Octamer Transcription Factor-1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C440829">RAP1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034501">Telomere-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051778" MajorTopicYN="N">Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017173" MajorTopicYN="N">Caenorhabditis elegans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029742" MajorTopicYN="N">Caenorhabditis elegans Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051766" MajorTopicYN="N">Early Growth Response Protein 1</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018398" MajorTopicYN="N">Homeodomain Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050811" MajorTopicYN="N">Octamer Transcription Factor-1</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="Y">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034501" MajorTopicYN="N">Telomere-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>06</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>07</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16998473</ArticleId>
<ArticleId IdType="pii">nbt1246</ArticleId>
<ArticleId IdType="doi">10.1038/nbt1246</ArticleId>
<ArticleId IdType="pmc">PMC4419707</ArticleId>
<ArticleId IdType="mid">NIHMS684605</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2654-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11880620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Mar 12;72(5):741-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8453668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 28;99(11):7554-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12032321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D91-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Jul 25;22(14):2791-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8052535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Feb 27;32(4):e44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005 Jul 13;6:176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16014175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Apr 8;77(1):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8156594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Dec;36(12):1331-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15543148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):867-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 Jul;9(7):2944-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2674675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Nov;86(22):8737-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2510170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Mar;37(3):311-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 2;431(7004):99-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15343339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Oct;17(10):974-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10504697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2006;338:245-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16888363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7158-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11404456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2006 May;2(5):e53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16733548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1987 Feb 20;193(4):723-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3612791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Mar 1;30(5):1255-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11861919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1994 Aug;120(8):2175-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7925019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2004 Dec;66(6):1361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15340042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Oct 15;31(20):e124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Oct 19;313(2):309-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11800559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Aug;28(4):327-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11455386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1998;295:268-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9750223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Aug;16(8):962-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Feb 1;295(5556):821-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11823633</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002222 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002222 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16998473
   |texte=   Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16998473" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021