Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development of a statistically robust quantification method for microorganisms in mixtures using oligonucleotide microarrays.

Identifieur interne : 002183 ( PubMed/Corpus ); précédent : 002182; suivant : 002184

Development of a statistically robust quantification method for microorganisms in mixtures using oligonucleotide microarrays.

Auteurs : Alex E. Pozhitkov ; Kyle D. Bailey ; Peter A. Noble

Source :

RBID : pubmed:17553581

English descriptors

Abstract

High-density oligonucleotide arrays can be extremely useful for identifying and quantifying specific targets (i.e., ribosomal RNA of microorganisms) in mixtures. However, current array identification schemes are severely compromised by nonspecific hybridization, resulting in numerous false-positive and false-negative calls, they lack an adequate internal control for assessing the quality of identification, and are dependent on amplification of specific target sequences which introduce biases. We have developed a novel approach for the routine quantification and identification of metabolically active microorganisms in mixed samples. The advantage of our approach over conventional ones is that it avoids designing, optimizing, validating, and selecting oligonucleotide probes for arrays; also, nonspecific hybridization is no longer a problem. The basic principle of the approach is that a fluorescence pattern of a mixed sample is a superposition of the fluorescent patterns for each target. The superposition can be quantitatively deconvoluted in terms of concentrations of each microbe. We demonstrated the utility of our approach by extracting rRNA from three microorganisms, making test mixtures, labeling the rRNA, and hybridizing each test mixture to DNA oligonucleotide (20-mers, n=346,608) arrays. Comparison of known concentrations of individual targets in mixtures to those estimated by the solution revealed highly consistent results. The goodness-of-fit of the solution revealed that about 90% of the variability in the data could be explained. A new analytical approach for microbial identification and quantification has been presented in this report. Our findings demonstrate that including signal intensity values from all duplexes on the array, which are essentially nonspecific to the target organisms, significantly improved predictions of known microbial targets. To our knowledge, this is the first study to report this phenomenon. In addition, we demonstrate that the method is a self-sufficient analytical procedure since it provides statistical confidence of the quantification.

DOI: 10.1016/j.mimet.2007.05.001
PubMed: 17553581

Links to Exploration step

pubmed:17553581

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development of a statistically robust quantification method for microorganisms in mixtures using oligonucleotide microarrays.</title>
<author>
<name sortKey="Pozhitkov, Alex E" sort="Pozhitkov, Alex E" uniqKey="Pozhitkov A" first="Alex E" last="Pozhitkov">Alex E. Pozhitkov</name>
<affiliation>
<nlm:affiliation>Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA. Alexander.Pozhitkov@usm.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bailey, Kyle D" sort="Bailey, Kyle D" uniqKey="Bailey K" first="Kyle D" last="Bailey">Kyle D. Bailey</name>
</author>
<author>
<name sortKey="Noble, Peter A" sort="Noble, Peter A" uniqKey="Noble P" first="Peter A" last="Noble">Peter A. Noble</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17553581</idno>
<idno type="pmid">17553581</idno>
<idno type="doi">10.1016/j.mimet.2007.05.001</idno>
<idno type="wicri:Area/PubMed/Corpus">002183</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002183</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Development of a statistically robust quantification method for microorganisms in mixtures using oligonucleotide microarrays.</title>
<author>
<name sortKey="Pozhitkov, Alex E" sort="Pozhitkov, Alex E" uniqKey="Pozhitkov A" first="Alex E" last="Pozhitkov">Alex E. Pozhitkov</name>
<affiliation>
<nlm:affiliation>Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA. Alexander.Pozhitkov@usm.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bailey, Kyle D" sort="Bailey, Kyle D" uniqKey="Bailey K" first="Kyle D" last="Bailey">Kyle D. Bailey</name>
</author>
<author>
<name sortKey="Noble, Peter A" sort="Noble, Peter A" uniqKey="Noble P" first="Peter A" last="Noble">Peter A. Noble</name>
</author>
</analytic>
<series>
<title level="j">Journal of microbiological methods</title>
<idno type="ISSN">0167-7012</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Colony Count, Microbial (methods)</term>
<term>Colony Count, Microbial (standards)</term>
<term>Nucleic Acid Hybridization (methods)</term>
<term>Oligonucleotide Array Sequence Analysis (methods)</term>
<term>Oligonucleotide Array Sequence Analysis (standards)</term>
<term>RNA, Bacterial (analysis)</term>
<term>RNA, Bacterial (genetics)</term>
<term>RNA, Bacterial (isolation & purification)</term>
<term>RNA, Ribosomal (analysis)</term>
<term>RNA, Ribosomal (genetics)</term>
<term>RNA, Ribosomal (isolation & purification)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>RNA, Bacterial</term>
<term>RNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Bacterial</term>
<term>RNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>RNA, Bacterial</term>
<term>RNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Colony Count, Microbial</term>
<term>Nucleic Acid Hybridization</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="standards" xml:lang="en">
<term>Colony Count, Microbial</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High-density oligonucleotide arrays can be extremely useful for identifying and quantifying specific targets (i.e., ribosomal RNA of microorganisms) in mixtures. However, current array identification schemes are severely compromised by nonspecific hybridization, resulting in numerous false-positive and false-negative calls, they lack an adequate internal control for assessing the quality of identification, and are dependent on amplification of specific target sequences which introduce biases. We have developed a novel approach for the routine quantification and identification of metabolically active microorganisms in mixed samples. The advantage of our approach over conventional ones is that it avoids designing, optimizing, validating, and selecting oligonucleotide probes for arrays; also, nonspecific hybridization is no longer a problem. The basic principle of the approach is that a fluorescence pattern of a mixed sample is a superposition of the fluorescent patterns for each target. The superposition can be quantitatively deconvoluted in terms of concentrations of each microbe. We demonstrated the utility of our approach by extracting rRNA from three microorganisms, making test mixtures, labeling the rRNA, and hybridizing each test mixture to DNA oligonucleotide (20-mers, n=346,608) arrays. Comparison of known concentrations of individual targets in mixtures to those estimated by the solution revealed highly consistent results. The goodness-of-fit of the solution revealed that about 90% of the variability in the data could be explained. A new analytical approach for microbial identification and quantification has been presented in this report. Our findings demonstrate that including signal intensity values from all duplexes on the array, which are essentially nonspecific to the target organisms, significantly improved predictions of known microbial targets. To our knowledge, this is the first study to report this phenomenon. In addition, we demonstrate that the method is a self-sufficient analytical procedure since it provides statistical confidence of the quantification.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17553581</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>09</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0167-7012</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>70</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2007</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of microbiological methods</Title>
<ISOAbbreviation>J. Microbiol. Methods</ISOAbbreviation>
</Journal>
<ArticleTitle>Development of a statistically robust quantification method for microorganisms in mixtures using oligonucleotide microarrays.</ArticleTitle>
<Pagination>
<MedlinePgn>292-300</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>High-density oligonucleotide arrays can be extremely useful for identifying and quantifying specific targets (i.e., ribosomal RNA of microorganisms) in mixtures. However, current array identification schemes are severely compromised by nonspecific hybridization, resulting in numerous false-positive and false-negative calls, they lack an adequate internal control for assessing the quality of identification, and are dependent on amplification of specific target sequences which introduce biases. We have developed a novel approach for the routine quantification and identification of metabolically active microorganisms in mixed samples. The advantage of our approach over conventional ones is that it avoids designing, optimizing, validating, and selecting oligonucleotide probes for arrays; also, nonspecific hybridization is no longer a problem. The basic principle of the approach is that a fluorescence pattern of a mixed sample is a superposition of the fluorescent patterns for each target. The superposition can be quantitatively deconvoluted in terms of concentrations of each microbe. We demonstrated the utility of our approach by extracting rRNA from three microorganisms, making test mixtures, labeling the rRNA, and hybridizing each test mixture to DNA oligonucleotide (20-mers, n=346,608) arrays. Comparison of known concentrations of individual targets in mixtures to those estimated by the solution revealed highly consistent results. The goodness-of-fit of the solution revealed that about 90% of the variability in the data could be explained. A new analytical approach for microbial identification and quantification has been presented in this report. Our findings demonstrate that including signal intensity values from all duplexes on the array, which are essentially nonspecific to the target organisms, significantly improved predictions of known microbial targets. To our knowledge, this is the first study to report this phenomenon. In addition, we demonstrate that the method is a self-sufficient analytical procedure since it provides statistical confidence of the quantification.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pozhitkov</LastName>
<ForeName>Alex E</ForeName>
<Initials>AE</Initials>
<AffiliationInfo>
<Affiliation>Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA. Alexander.Pozhitkov@usm.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bailey</LastName>
<ForeName>Kyle D</ForeName>
<Initials>KD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Noble</LastName>
<ForeName>Peter A</ForeName>
<Initials>PA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U01 DE014955</GrantID>
<Acronym>DE</Acronym>
<Agency>NIDCR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1U01DE014955-01</GrantID>
<Acronym>DE</Acronym>
<Agency>NIDCR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>05</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Microbiol Methods</MedlineTA>
<NlmUniqueID>8306883</NlmUniqueID>
<ISSNLinking>0167-7012</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012329">RNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012335">RNA, Ribosomal</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015169" MajorTopicYN="N">Colony Count, Microbial</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
<QualifierName UI="Q000592" MajorTopicYN="N">standards</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="N">Nucleic Acid Hybridization</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
<QualifierName UI="Q000592" MajorTopicYN="N">standards</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012329" MajorTopicYN="N">RNA, Bacterial</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012335" MajorTopicYN="N">RNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>01</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2007</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17553581</ArticleId>
<ArticleId IdType="pii">S0167-7012(07)00169-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.mimet.2007.05.001</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002183 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002183 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17553581
   |texte=   Development of a statistically robust quantification method for microorganisms in mixtures using oligonucleotide microarrays.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:17553581" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021