Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Linkage between substrate recognition and catalysis during cleavage of sarcin/ricin loop RNA by restrictocin.

Identifieur interne : 002155 ( PubMed/Corpus ); précédent : 002154; suivant : 002156

Linkage between substrate recognition and catalysis during cleavage of sarcin/ricin loop RNA by restrictocin.

Auteurs : Alexei V. Korennykh ; Matthew J. Plantinga ; Carl C. Correll ; Joseph A. Piccirilli

Source :

RBID : pubmed:17929942

English descriptors

Abstract

Restrictocin is a site-specific endoribonuclease that inactivates ribosomes by cleaving the sarcin/ricin loop (SRL) of 23S-28S rRNA. Here we present a kinetic and thermodynamic analysis of the SRL cleavage reaction based on monitoring the cleavage of RNA oligonucleotides (2-27-mers). Restrictocin binds to a 27-mer SRL model substrate (designated wild-type SRL) via electrostatic interactions to form a nonspecific ground state complex E:S. At pH 6.7, physical steps govern the reaction rate: the wild-type substrate reacts at a partially diffusion-limited rate, and a faster-reacting SRL, containing a 3'-sulfur atom at the scissile phosphate, reacts at a fully diffusion-limited rate (k2/K1/2 = 1.1 x 10(9) M-1 s-1). At pH 7.4, the chemical step apparently limits the SRL cleavage rate. After the nonspecific binding step, restrictocin recognizes the SRL structure, which imparts 4.3 kcal/mol transition state stabilization relative to a single-stranded RNA. The two conserved SRL modules, bulged-G motif and GAGA tetraloop, contribute at least 2.4 and 1.9 kcal/mol, respectively, to the recognition. These findings suggest a model of SRL recognition in which restrictocin contacts the GAGA tetraloop and the bulged guanosine of the bulged-G motif to progress from the nonspecific ground state complex (E:S) to the higher-energy-specific complex (E.S) en route to the chemical transition state. Comparison of restrictocin with other ribonucleases revealed that restrictocin exhibits a 10(3)-10(6)-fold smaller ribonuclease activity against single-stranded RNA than do the restrictocin homologues, non-structure-specific ribonucleases T1 and U2. Together, these findings show how structural features of the SRL substrate facilitate catalysis and provide a mechanism for distinguishing between cognate and noncognate RNA.

DOI: 10.1021/bi700931y
PubMed: 17929942

Links to Exploration step

pubmed:17929942

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Linkage between substrate recognition and catalysis during cleavage of sarcin/ricin loop RNA by restrictocin.</title>
<author>
<name sortKey="Korennykh, Alexei V" sort="Korennykh, Alexei V" uniqKey="Korennykh A" first="Alexei V" last="Korennykh">Alexei V. Korennykh</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plantinga, Matthew J" sort="Plantinga, Matthew J" uniqKey="Plantinga M" first="Matthew J" last="Plantinga">Matthew J. Plantinga</name>
</author>
<author>
<name sortKey="Correll, Carl C" sort="Correll, Carl C" uniqKey="Correll C" first="Carl C" last="Correll">Carl C. Correll</name>
</author>
<author>
<name sortKey="Piccirilli, Joseph A" sort="Piccirilli, Joseph A" uniqKey="Piccirilli J" first="Joseph A" last="Piccirilli">Joseph A. Piccirilli</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17929942</idno>
<idno type="pmid">17929942</idno>
<idno type="doi">10.1021/bi700931y</idno>
<idno type="wicri:Area/PubMed/Corpus">002155</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002155</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Linkage between substrate recognition and catalysis during cleavage of sarcin/ricin loop RNA by restrictocin.</title>
<author>
<name sortKey="Korennykh, Alexei V" sort="Korennykh, Alexei V" uniqKey="Korennykh A" first="Alexei V" last="Korennykh">Alexei V. Korennykh</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plantinga, Matthew J" sort="Plantinga, Matthew J" uniqKey="Plantinga M" first="Matthew J" last="Plantinga">Matthew J. Plantinga</name>
</author>
<author>
<name sortKey="Correll, Carl C" sort="Correll, Carl C" uniqKey="Correll C" first="Carl C" last="Correll">Carl C. Correll</name>
</author>
<author>
<name sortKey="Piccirilli, Joseph A" sort="Piccirilli, Joseph A" uniqKey="Piccirilli J" first="Joseph A" last="Piccirilli">Joseph A. Piccirilli</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Catalysis</term>
<term>Endoribonucleases (genetics)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Models, Biological</term>
<term>Models, Molecular</term>
<term>Models, Theoretical</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>RNA, Fungal (chemistry)</term>
<term>RNA, Fungal (metabolism)</term>
<term>Ribonucleases (chemistry)</term>
<term>Ribonucleases (metabolism)</term>
<term>Structure-Activity Relationship</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fungal Proteins</term>
<term>RNA, Fungal</term>
<term>Ribonucleases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Endoribonucleases</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>RNA, Fungal</term>
<term>Ribonucleases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Catalysis</term>
<term>Models, Biological</term>
<term>Models, Molecular</term>
<term>Models, Theoretical</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Structure-Activity Relationship</term>
<term>Substrate Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Restrictocin is a site-specific endoribonuclease that inactivates ribosomes by cleaving the sarcin/ricin loop (SRL) of 23S-28S rRNA. Here we present a kinetic and thermodynamic analysis of the SRL cleavage reaction based on monitoring the cleavage of RNA oligonucleotides (2-27-mers). Restrictocin binds to a 27-mer SRL model substrate (designated wild-type SRL) via electrostatic interactions to form a nonspecific ground state complex E:S. At pH 6.7, physical steps govern the reaction rate: the wild-type substrate reacts at a partially diffusion-limited rate, and a faster-reacting SRL, containing a 3'-sulfur atom at the scissile phosphate, reacts at a fully diffusion-limited rate (k2/K1/2 = 1.1 x 10(9) M-1 s-1). At pH 7.4, the chemical step apparently limits the SRL cleavage rate. After the nonspecific binding step, restrictocin recognizes the SRL structure, which imparts 4.3 kcal/mol transition state stabilization relative to a single-stranded RNA. The two conserved SRL modules, bulged-G motif and GAGA tetraloop, contribute at least 2.4 and 1.9 kcal/mol, respectively, to the recognition. These findings suggest a model of SRL recognition in which restrictocin contacts the GAGA tetraloop and the bulged guanosine of the bulged-G motif to progress from the nonspecific ground state complex (E:S) to the higher-energy-specific complex (E.S) en route to the chemical transition state. Comparison of restrictocin with other ribonucleases revealed that restrictocin exhibits a 10(3)-10(6)-fold smaller ribonuclease activity against single-stranded RNA than do the restrictocin homologues, non-structure-specific ribonucleases T1 and U2. Together, these findings show how structural features of the SRL substrate facilitate catalysis and provide a mechanism for distinguishing between cognate and noncognate RNA.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17929942</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>01</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>46</Volume>
<Issue>44</Issue>
<PubDate>
<Year>2007</Year>
<Month>Nov</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Linkage between substrate recognition and catalysis during cleavage of sarcin/ricin loop RNA by restrictocin.</ArticleTitle>
<Pagination>
<MedlinePgn>12744-56</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Restrictocin is a site-specific endoribonuclease that inactivates ribosomes by cleaving the sarcin/ricin loop (SRL) of 23S-28S rRNA. Here we present a kinetic and thermodynamic analysis of the SRL cleavage reaction based on monitoring the cleavage of RNA oligonucleotides (2-27-mers). Restrictocin binds to a 27-mer SRL model substrate (designated wild-type SRL) via electrostatic interactions to form a nonspecific ground state complex E:S. At pH 6.7, physical steps govern the reaction rate: the wild-type substrate reacts at a partially diffusion-limited rate, and a faster-reacting SRL, containing a 3'-sulfur atom at the scissile phosphate, reacts at a fully diffusion-limited rate (k2/K1/2 = 1.1 x 10(9) M-1 s-1). At pH 7.4, the chemical step apparently limits the SRL cleavage rate. After the nonspecific binding step, restrictocin recognizes the SRL structure, which imparts 4.3 kcal/mol transition state stabilization relative to a single-stranded RNA. The two conserved SRL modules, bulged-G motif and GAGA tetraloop, contribute at least 2.4 and 1.9 kcal/mol, respectively, to the recognition. These findings suggest a model of SRL recognition in which restrictocin contacts the GAGA tetraloop and the bulged guanosine of the bulged-G motif to progress from the nonspecific ground state complex (E:S) to the higher-energy-specific complex (E.S) en route to the chemical transition state. Comparison of restrictocin with other ribonucleases revealed that restrictocin exhibits a 10(3)-10(6)-fold smaller ribonuclease activity against single-stranded RNA than do the restrictocin homologues, non-structure-specific ribonucleases T1 and U2. Together, these findings show how structural features of the SRL substrate facilitate catalysis and provide a mechanism for distinguishing between cognate and noncognate RNA.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Korennykh</LastName>
<ForeName>Alexei V</ForeName>
<Initials>AV</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Plantinga</LastName>
<ForeName>Matthew J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Correll</LastName>
<ForeName>Carl C</ForeName>
<Initials>CC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Piccirilli</LastName>
<ForeName>Joseph A</ForeName>
<Initials>JA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM59782</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>10</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012331">RNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1407-48-3</RegistryNumber>
<NameOfSubstance UI="C014801">alpha-sarcin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1F8KS5O261</RegistryNumber>
<NameOfSubstance UI="C036196">MITF protein, Aspergillus restrictus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D004722">Endoribonucleases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D012260">Ribonucleases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004722" MajorTopicYN="N">Endoribonucleases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="Y">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012331" MajorTopicYN="N">RNA, Fungal</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012260" MajorTopicYN="N">Ribonucleases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17929942</ArticleId>
<ArticleId IdType="doi">10.1021/bi700931y</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002155 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002155 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17929942
   |texte=   Linkage between substrate recognition and catalysis during cleavage of sarcin/ricin loop RNA by restrictocin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:17929942" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021