Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope.

Identifieur interne : 001E66 ( PubMed/Corpus ); précédent : 001E65; suivant : 001E67

Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope.

Auteurs : Justyna Sawa ; Hélène Malet ; Tobias Krojer ; Flavia Canellas ; Michael Ehrmann ; Tim Clausen

Source :

RBID : pubmed:21685389

English descriptors

Abstract

To react to distinct stress situations and to prevent the accumulation of misfolded proteins, all cells employ a number of proteases and chaperones, which together set up an efficient protein quality control system. The functionality of proteins in the cell envelope of Escherichia coli is monitored by the HtrA proteases DegS, DegP, and DegQ. In contrast with DegP and DegS, the structure and function of DegQ has not been addressed in detail. Here, we show that substrate binding triggers the conversion of the resting DegQ hexamer into catalytically active 12- and 24-mers. Interestingly, substrate-induced oligomer reassembly and protease activation depends on the first PDZ domain but not on the second. Therefore, the regulatory mechanism originally identified in DegP should be a common feature of HtrA proteases, most of which encompass only a single PDZ domain. Using a DegQ mutant lacking the second PDZ domain, we determined the high resolution crystal structure of a dodecameric HtrA complex. The nearly identical domain orientation of protease and PDZ domains within 12- and 24-meric HtrA complexes reveals a conserved PDZ1 → L3 → LD/L1/L2 signaling cascade, in which loop L3 senses the repositioned PDZ1 domain of higher order, substrate-engaged particles and activates protease function. Furthermore, our in vitro and in vivo data imply a pH-related function of DegQ in the bacterial cell envelope.

DOI: 10.1074/jbc.M111.243832
PubMed: 21685389

Links to Exploration step

pubmed:21685389

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope.</title>
<author>
<name sortKey="Sawa, Justyna" sort="Sawa, Justyna" uniqKey="Sawa J" first="Justyna" last="Sawa">Justyna Sawa</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Pathology, A-1030 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Malet, Helene" sort="Malet, Helene" uniqKey="Malet H" first="Hélène" last="Malet">Hélène Malet</name>
</author>
<author>
<name sortKey="Krojer, Tobias" sort="Krojer, Tobias" uniqKey="Krojer T" first="Tobias" last="Krojer">Tobias Krojer</name>
</author>
<author>
<name sortKey="Canellas, Flavia" sort="Canellas, Flavia" uniqKey="Canellas F" first="Flavia" last="Canellas">Flavia Canellas</name>
</author>
<author>
<name sortKey="Ehrmann, Michael" sort="Ehrmann, Michael" uniqKey="Ehrmann M" first="Michael" last="Ehrmann">Michael Ehrmann</name>
</author>
<author>
<name sortKey="Clausen, Tim" sort="Clausen, Tim" uniqKey="Clausen T" first="Tim" last="Clausen">Tim Clausen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21685389</idno>
<idno type="pmid">21685389</idno>
<idno type="doi">10.1074/jbc.M111.243832</idno>
<idno type="wicri:Area/PubMed/Corpus">001E66</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope.</title>
<author>
<name sortKey="Sawa, Justyna" sort="Sawa, Justyna" uniqKey="Sawa J" first="Justyna" last="Sawa">Justyna Sawa</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Pathology, A-1030 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Malet, Helene" sort="Malet, Helene" uniqKey="Malet H" first="Hélène" last="Malet">Hélène Malet</name>
</author>
<author>
<name sortKey="Krojer, Tobias" sort="Krojer, Tobias" uniqKey="Krojer T" first="Tobias" last="Krojer">Tobias Krojer</name>
</author>
<author>
<name sortKey="Canellas, Flavia" sort="Canellas, Flavia" uniqKey="Canellas F" first="Flavia" last="Canellas">Flavia Canellas</name>
</author>
<author>
<name sortKey="Ehrmann, Michael" sort="Ehrmann, Michael" uniqKey="Ehrmann M" first="Michael" last="Ehrmann">Michael Ehrmann</name>
</author>
<author>
<name sortKey="Clausen, Tim" sort="Clausen, Tim" uniqKey="Clausen T" first="Tim" last="Clausen">Tim Clausen</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allosteric Site</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Calorimetry (methods)</term>
<term>Cell Membrane (metabolism)</term>
<term>Chromatography, Gel</term>
<term>Crystallization</term>
<term>Crystallography, X-Ray (methods)</term>
<term>Escherichia coli Proteins (chemistry)</term>
<term>Escherichia coli Proteins (physiology)</term>
<term>Heat-Shock Proteins (metabolism)</term>
<term>Hydrogen-Ion Concentration</term>
<term>Molecular Conformation</term>
<term>Periplasmic Proteins (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Structure, Tertiary</term>
<term>Serine Endopeptidases (chemistry)</term>
<term>Serine Endopeptidases (metabolism)</term>
<term>Serine Endopeptidases (physiology)</term>
<term>Serine Proteases (chemistry)</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Serine Endopeptidases</term>
<term>Serine Proteases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Heat-Shock Proteins</term>
<term>Periplasmic Proteins</term>
<term>Serine Endopeptidases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Calorimetry</term>
<term>Crystallography, X-Ray</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Serine Endopeptidases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Allosteric Site</term>
<term>Chromatography, Gel</term>
<term>Crystallization</term>
<term>Hydrogen-Ion Concentration</term>
<term>Molecular Conformation</term>
<term>Protein Binding</term>
<term>Protein Structure, Tertiary</term>
<term>Thermodynamics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To react to distinct stress situations and to prevent the accumulation of misfolded proteins, all cells employ a number of proteases and chaperones, which together set up an efficient protein quality control system. The functionality of proteins in the cell envelope of Escherichia coli is monitored by the HtrA proteases DegS, DegP, and DegQ. In contrast with DegP and DegS, the structure and function of DegQ has not been addressed in detail. Here, we show that substrate binding triggers the conversion of the resting DegQ hexamer into catalytically active 12- and 24-mers. Interestingly, substrate-induced oligomer reassembly and protease activation depends on the first PDZ domain but not on the second. Therefore, the regulatory mechanism originally identified in DegP should be a common feature of HtrA proteases, most of which encompass only a single PDZ domain. Using a DegQ mutant lacking the second PDZ domain, we determined the high resolution crystal structure of a dodecameric HtrA complex. The nearly identical domain orientation of protease and PDZ domains within 12- and 24-meric HtrA complexes reveals a conserved PDZ1 → L3 → LD/L1/L2 signaling cascade, in which loop L3 senses the repositioned PDZ1 domain of higher order, substrate-engaged particles and activates protease function. Furthermore, our in vitro and in vivo data imply a pH-related function of DegQ in the bacterial cell envelope.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21685389</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>286</Volume>
<Issue>35</Issue>
<PubDate>
<Year>2011</Year>
<Month>Sep</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J. Biol. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope.</ArticleTitle>
<Pagination>
<MedlinePgn>30680-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M111.243832</ELocationID>
<Abstract>
<AbstractText>To react to distinct stress situations and to prevent the accumulation of misfolded proteins, all cells employ a number of proteases and chaperones, which together set up an efficient protein quality control system. The functionality of proteins in the cell envelope of Escherichia coli is monitored by the HtrA proteases DegS, DegP, and DegQ. In contrast with DegP and DegS, the structure and function of DegQ has not been addressed in detail. Here, we show that substrate binding triggers the conversion of the resting DegQ hexamer into catalytically active 12- and 24-mers. Interestingly, substrate-induced oligomer reassembly and protease activation depends on the first PDZ domain but not on the second. Therefore, the regulatory mechanism originally identified in DegP should be a common feature of HtrA proteases, most of which encompass only a single PDZ domain. Using a DegQ mutant lacking the second PDZ domain, we determined the high resolution crystal structure of a dodecameric HtrA complex. The nearly identical domain orientation of protease and PDZ domains within 12- and 24-meric HtrA complexes reveals a conserved PDZ1 → L3 → LD/L1/L2 signaling cascade, in which loop L3 senses the repositioned PDZ1 domain of higher order, substrate-engaged particles and activates protease function. Furthermore, our in vitro and in vivo data imply a pH-related function of DegQ in the bacterial cell envelope.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sawa</LastName>
<ForeName>Justyna</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular Pathology, A-1030 Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Malet</LastName>
<ForeName>Hélène</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Krojer</LastName>
<ForeName>Tobias</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Canellas</LastName>
<ForeName>Flavia</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ehrmann</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Clausen</LastName>
<ForeName>Tim</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>3STI</AccessionNumber>
<AccessionNumber>3STJ</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>I 235</GrantID>
<Acronym>FWF_</Acronym>
<Agency>Austrian Science Fund FWF</Agency>
<Country>Austria</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>06</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C066496">DegS protein, Bacteria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006360">Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033903">Periplasmic Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D057057">Serine Proteases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="C061682">DegP protease</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="C098059">DegQ protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="D012697">Serine Endopeptidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000495" MajorTopicYN="N">Allosteric Site</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002151" MajorTopicYN="N">Calorimetry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002850" MajorTopicYN="N">Chromatography, Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006360" MajorTopicYN="N">Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008968" MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033903" MajorTopicYN="N">Periplasmic Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012697" MajorTopicYN="N">Serine Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057057" MajorTopicYN="N">Serine Proteases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21685389</ArticleId>
<ArticleId IdType="pii">M111.243832</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M111.243832</ArticleId>
<ArticleId IdType="pmc">PMC3162429</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 1999 Apr 30;97(3):339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10319814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Dec 3;286(5446):1888-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10583944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Feb 15;20(4):713-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2001 Sep;69(9):5538-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2002 Jan 1;62(1):262-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11782386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Mar 28;416(6879):455-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2002 Jun;9(6):436-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2002 Sep;70(9):4772-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jul;108(3):1059-1066</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Dec;106(4):1647-1658</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):443-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Apr 4;113(1):61-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12679035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Jul;49(1):143-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12823817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):721-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 18;426(6968):900-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14685251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 May 14;117(4):483-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15137941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2004 Jun;72(6):3584-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):6021-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15855271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Jun;56(5):1119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15882407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Mol Biol. 2005 May 31;38(3):266-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15943900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2005 Oct 6;353(14):1489-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16207851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 Jan;74(1):765-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16369036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Pathog. 2006 Oct-Nov;41(4-5):174-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16949246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Nov 10;314(5801):992-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17053109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Jan 1;21(1):6-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1243-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17906618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Oct 15;21(20):2659-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jun 10;47(23):6092-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18479146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jun 12;453(7197):885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18496527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7702-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18505836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacogenomics. 2008 Aug;9(8):1069-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18681782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11939-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18697939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2009 Mar;155(Pt 3):873-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19246758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4858-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19255437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Targets. 2009 Apr;10(4):372-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19355862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Cancer Drug Targets. 2009 Jun;9(4):451-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19519315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2009 Nov;160(9):660-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19695325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr A. 1991 Mar 1;47 ( Pt 2):110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2025413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Jul;17(7):844-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20581825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Jul;17(7):837-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20581826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Res. 2010 Sep;8(9):1248-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20671064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 Mar;18(3):386-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21297635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2011 Mar;12(3):152-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21326199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1989 Mar;171(3):1574-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2537822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1989 Sep;3(9):1462-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2691330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Mar;85(5):1576-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3278319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gut. 1988 Aug;29(8):1035-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3410329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1995 Feb 15;9(4):387-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7883164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Feb;178(4):1146-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8576051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Oct;178(20):5925-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8830688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Apr 1;11(7):815-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9106654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1997 Oct;26(2):209-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9383148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Mar 20;273(12):7094-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9507020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001E66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21685389
   |texte=   Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21685389" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021